Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this work, we construct Lyapunov functionals to analyze the global stability of the equilibria in reaction-diffusion systems arising in biological models. We employ Lyapunov functionals originally constructed for associated ordinary differential equation (ODE) models and extend them to partial differential equation (PDE) systems involving spatial diffusion. We analyze disease-free and endemic equilibrium stability in terms of the basic reproduction number [Formula: see text] a threshold parameter. Specifically, we show that when [Formula: see text] the disease-free equilibrium is globally asymptotically stable, while for [Formula: see text] the endemic equilibrium is globally stable under certain conditions. To make our methods more feasible, we supply some examples from epidemiology and good health, including spatially structured models with diffusion. Numerical simulations are provided to justify the theoretical results and to show the convergence behavior of the solutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381285 | PMC |
http://dx.doi.org/10.1038/s41598-025-09761-x | DOI Listing |