98%
921
2 minutes
20
Alpha-synuclein (aSyn) post-translational modifications (PTM), especially phosphorylation at serine 129 and C-terminal truncations, are highly enriched in Lewy bodies (LB), Lewy neurites, and other pathological aggregates in Parkinson's disease and synucleinopathies. However, the precise role of these PTM in pathology formation, neurodegeneration, and pathology spreading remains unclear. Here, we systematically investigated the role of post-fibrillization C-terminal aSyn truncations in regulating uptake, processing, seeding, and LB-like inclusion formation using a neuronal seeding model that recapitulates LB formation and neurodegeneration. We show that C-terminal cleavage of aSyn fibrils occurs rapidly post exogenous fibril internalization and during intracellular LB-like inclusion formation. Blocking cleavage of internalized fibrils does not affect seeding, but inhibiting enzymes such as calpains 1 and 2 alters LB-like inclusion formation. We show that C-terminal truncations, along with other PTMs, regulate fibril interactome remodeling, shortening, lateral association, and packing. These findings reveal distinct roles of C-terminal truncations at different aggregation stages on the pathway to LB formation, highlighting the need for consideration of stage‑specific strategies to target aSyn proteolytic cleavages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12381302 | PMC |
http://dx.doi.org/10.1038/s41531-025-01084-y | DOI Listing |
Ann Rheum Dis
September 2025
Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Hannover Medical School, Cluster of Excellence RESIST (EXC 2155), Hannover, Germany. Electronic address:
Objectives: IκBα controls the canonical activation of NFκB. IκBα gain-of-function due to NFKBIA variants affecting the N-terminus of IκBα-especially residues 32 and 36-manifests with combined immunodeficiency. The role of NFKBIA variants affecting other IκBα domains has not been described.
View Article and Find Full Text PDFExp Eye Res
September 2025
Department of Ophthalmology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Henan Eye Hospital, Zhengzhou, Henan, China; Henan Key Laboratory of Ophthalmology and Visual Science, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, China; Eye institu
Bardet-Biedl Syndrome (BBS) is a rare autosomal recessive ciliopathy characterized by genetic heterogeneity. Despite significant progress in understanding the BBSome-coding genes associated with ciliopathies, the pathogenesis linked to mutations in chaperonin-coding genes (BBS6, BBS10, and BBS12) remains poorly defined. This study aims to confirm the genetic diagnosis of BBS and elucidate the pathological mechanisms in causative genes of BBS10 and BBS12.
View Article and Find Full Text PDFJ Biol Chem
September 2025
Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
Aminoacyl-tRNA synthetases (aaRSs) catalyze the aminoacylation of tRNA with their cognate amino acids, an essential step in protein biosynthesis. While biallelic mutations in aaRSs often result in severe multi-organ dysfunction accompanied by developmental delays, monoallelic mutations typically cause milder, tissue-specific symptoms. However, a de novo monoallelic nonsense mutation (R534*) in the asparaginyl-tRNA synthetase (AsnRS)-resulting in a premature stop codon and 15-residue C-terminal truncation-has been identified in multiple families and is associated with severe neurodevelopmental symptoms.
View Article and Find Full Text PDFBackground Over 300 mutations in have been identified as causes of early-onset Alzheimer's disease (EOAD). While these include missense mutations and a few insertions, deletions, or duplications, none result in open reading frame shifts, and all alter γ-secretase function to increase the long/short Aβ ratio. Methods We identified a novel heterozygous nonsense variant, c.
View Article and Find Full Text PDFBioorg Med Chem
August 2025
Department of Chemistry, Duke University, Durham, NC, USA; Department of Molecular Genetics & Microbiology, Duke Medical School, Durham, NC, USA. Electronic address:
The molecular chaperone heat shock protein 90 (Hsp90) has an important role in maintaining proteostasis in Plasmodium parasites, the causative agents of malaria, and is of interest as a potential antimalarial drug target. Inhibitors targeting its well-characterized N-terminal ATP-binding site are lethal, but the development of high-affinity binders with selectivity for the Plasmodium over the human homolog has been challenging given the high conservation of this domain. A binding site in the less conserved Hsp90 C-terminus has been reported to interact with nucleotides and inhibitors in other eukaryotic systems, which could offer an alternative route for antimalarial design.
View Article and Find Full Text PDF