Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The incidence of Tick-borne encephalitis (TBE) cases has increased. The presumed location of transmission of Tick-borne encephalitis virus (TBEV) has been expanding increasingly in the western parts of Europe during the past decade. There has also been an increased incidence of surveillance-reported TBE cases in southern Sweden and southern Norway. Additionally, the warmer climate has enabled ticks to be present to a greater extent in the northern part of Scandinavia. In several reports, pre-school children tend to have a lower TBE incidence rate compared to teenagers, whereas both younger children and teenagers may experience severe neurological symptoms such as meningitis and encephalitis. In addition to physical impairments, long-term cognitive and mental impairments have been observed in up to 70% of children with TBEV infection. These may include attention deficits, reduced concentration and impaired memory, which can significantly affect daily life and school performance. Finland, Latvia and Slovenia have already included TBE vaccines in their National Immunisation Program (NIP). TBE vaccines are safe and effective for children from the age of 1, and we propose all countries with endemic areas include TBE vaccines in their future NIP. This is a cost-effective strategy and, even more important, a pivotal equity strategy for all European children.

Download full-text PDF

Source
http://dx.doi.org/10.1111/apa.70280DOI Listing

Publication Analysis

Top Keywords

tick-borne encephalitis
12
tbe vaccines
12
encephalitis tbe
8
national immunisation
8
tbe cases
8
tbe
7
children
5
tbe vaccine
4
vaccine national
4
immunisation programme-for
4

Similar Publications

From tick-borne encephalitis to bed bug pruritus: international collaboration for an unexpected infestation.

J Travel Med

September 2025

Virology and Pathogenesis Group, Public Health Microbiology, UK Health Security Agency, Porton Down, UK.

Our UK field investigations of tick-borne encephalitis virus were abruptly interrupted by a bed bug infestation in our short-term rental accommodation. Subsequent weeks were spent decontaminating belongings and monitoring our homes. As global bed bug infestations rise, increased awareness of prevention and control strategies is crucial for both travellers and accommodation providers.

View Article and Find Full Text PDF

Rising tide of Vector-Borne Diseases in Europe - Surveillance, Clinical Awareness, and Public Health Preparedness.

Int J Infect Dis

September 2025

Division of Infection and Immunity, University College London, London, United Kingdom; NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, NW3 OPQ, United Kingdom. Electronic address:

View Article and Find Full Text PDF

Deer tick virus (DTV) is a Tick-Borne Orthoflavivirus endemic to the United States, transmitted to humans through bites from the deer tick, , which is also the primary vector of , the causative agent of Lyme disease. Human infection with DTV can result in acute febrile illness followed by central nervous system complications, such as encephalitis and meningoencephalitis. Currently, there are mouse models established for investigating the pathogenesis and clinical outcomes of DTV that mimic human infections, but the strains of mice utilized are refractory to infection with Here, we describe the pathogenesis and clinical outcomes of DTV infection in C3H/HeJ mice.

View Article and Find Full Text PDF

Kyasanur Forest disease virus (KFDV), a tick-borne Orthoflavivirus endemic to the Indian subcontinent, is a public health threat due to its recurrent outbreaks and expanding geographic range. This review provides a comprehensive overview of KFDV, encompassing its epidemiological trends, transmission dynamics, and ecological determinants that influence its spread. We delve into the current understanding of KFDV pathogenesis, highlighting key viral and host factors that drive infection and disease progression.

View Article and Find Full Text PDF

This article presents a deep learning approach for classifying the developmental stages (larvae, nymphs, adult females, and adult males) of ticks, the most common tick species in Europe and a major vector of tick-borne pathogens, including , , and tick-borne encephalitis virus (TBEV). Each developmental stage plays a different role in disease transmission, with nymphs considered the most epidemiologically relevant stage due to their small size and high prevalence. We developed a convolutional neural network (CNN) model trained on a dataset of microscopic tick images collected in the area of Upper Silesia, Poland.

View Article and Find Full Text PDF