98%
921
2 minutes
20
Excitonic insulators represent a unique quantum phase of matter that enables the study of exotic quantum bosonic states. Strongly coupled electron-hole bilayers, which host stable dipolar exciton fluids with an exciton density that can be adjusted electrostatically, offer an ideal platform to investigate correlated excitonic insulators. On the basis of electron-hole bilayers made of MoSe/hexagonal boron nitride/WSe heterostructures, here we study the behaviour of excitonic insulators in a perpendicular magnetic field. We report the observation of excitonic quantum oscillations in both Coulomb drag signals and electrical resistance at low to medium magnetic fields. Under a strong magnetic field, we identify multiple quantum phase transitions between the excitonic insulator phase and the bilayer quantum Hall insulator phase. These findings underscore the interplay between the electron-hole interactions and Landau-level quantization, and enable further exploration of quantum phenomena in composite bosonic insulators.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41563-025-02316-5 | DOI Listing |
ACS Nano
September 2025
Insitut für Physik and Center for the Science of Materials Berlin, Humboldt-Universität zu Berlin, Berlin 12489, Germany.
Electric gating in atomically thin field-effect devices based on transition-metal dichalcogenides has recently been employed to manipulate their excitonic states, even producing exotic phases of matter, such as an excitonic insulator or Bose-Einstein condensate. Here, we mimic the electric gating effect of a bilayer-MoS on graphite by charge transfer induced by the adsorption of molecular p- and n-type dopants. The electric fields produced are evaluated from the electronic energy-level realignment and Stark splitting determined by X-ray and UV photoelectron spectroscopy measurements and compare very well with literature values obtained by optical spectroscopy for similar systems.
View Article and Find Full Text PDFACS Nano
September 2025
School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia.
Strong electron-hole interactions in a semimetal or narrow-gap semiconductor may drive a ground state of condensed excitons. Monolayer WTe has been proposed as a host material for such an exciton condensate, but the order parameter─the key signature of a macroscopic quantum-coherent condensate─has not been observed. Here, we use Fourier-transform scanning tunneling spectroscopy (FT-STS) to study quasiparticle interference (QPI) and periodic modulations of the local density of states (LDOS) in monolayer WTe.
View Article and Find Full Text PDFNat Mater
August 2025
School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA.
Quantum oscillations in magnetization or resistivity are a defining feature of metals in a magnetic field. The phenomenon is generally not expected in insulators without a Fermi surface. Its observation in Kondo and other correlated insulators provided counterexamples and remains poorly understood.
View Article and Find Full Text PDFNat Mater
August 2025
Department of Physics, University of California, Berkeley, CA, USA.
Excitonic insulators represent a unique quantum phase of matter that enables the study of exotic quantum bosonic states. Strongly coupled electron-hole bilayers, which host stable dipolar exciton fluids with an exciton density that can be adjusted electrostatically, offer an ideal platform to investigate correlated excitonic insulators. On the basis of electron-hole bilayers made of MoSe/hexagonal boron nitride/WSe heterostructures, here we study the behaviour of excitonic insulators in a perpendicular magnetic field.
View Article and Find Full Text PDFOpt Express
February 2025
Serving as cavity quantum electrodynamic testbeds at the nanoscale, the past decade has seen a prosperous rise in strong coupling between metallic nanostructures and semiconductor excitons. Within the iteration of the delicate plasmonic nanostructures, metal-insulator-metal (e.g.
View Article and Find Full Text PDF