Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Lung cancer (LC) remains a leading global cause of cancer mortality, with current diagnostic and prognostic methods lacking precision. This meta-analysis evaluated the role of artificial intelligence (AI) in LC imaging-based diagnosis and prognostic prediction. We systematically reviewed 315 studies from major databases up to January 7, 2025. Among them, 209 studies on LC diagnosis yielded a combined sensitivity of 0.86 (0.84-0.87), specificity of 0.86 (0.84-0.87), and AUC of 0.92 (0.90-0.94). For LC prognosis, 106 studies were analyzed: 58 with diagnostic data showed a pooled sensitivity of 0.83 (0.81-0.86), specificity of 0.83 (0.80-0.86), and AUC of 0.90 (0.87-0.92). Additionally, 53 studies differentiated between low- and high-risk patients, with a pooled hazard ratio of 2.53 (2.22-2.89) for overall survival and 2.80 (2.42-3.23) for progression-free survival. Subgroup analyses revealed an acceptable performance. AI exhibits strong potential for LC management but requires prospective multicenter validation to address clinical implementation challenges.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12378969 | PMC |
http://dx.doi.org/10.1038/s41698-025-01095-1 | DOI Listing |