A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Go-or-grow-or-die as a framework for the mathematical modeling of glioblastoma dynamics. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We investigate a three-dimensional reaction-diffusion model of avascular glioblastoma growth, introducing a new go-or-grow-or-die framework that incorporates reversible phenotypic switching between migratory and proliferative states, while accounting for the contribution of necrotic cells. To model necrotic cell accumulation, a quasi-steady-state approximation is employed, allowing the necrotic population to be expressed as a function of proliferating cell density. Analytical and numerical analyses of the model reveal that the traveling wave speed is consistently lower than that predicted by the classical Fisher-Kolmogorov-Petrovsky-Piskunov equation, highlighting the significance of phenotypic heterogeneity. In particular, we confirm the role of the switching parameter in modulating invasion speed. Approximate wave profiles derived using Canosa's method show strong agreement with numerical simulations. Furthermore, model predictions are validated against experimental data for the U87WT glioblastoma cell line, demonstrating improved accuracy in capturing tumor invasion when both phenotypic switching and necrosis are included. These findings underscore the importance of the go-or-grow-or-die framework in understanding tumor progression and establish a novel, generalizable framework for modeling cancer dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mbs.2025.109520DOI Listing

Publication Analysis

Top Keywords

go-or-grow-or-die framework
12
phenotypic switching
8
framework mathematical
4
mathematical modeling
4
modeling glioblastoma
4
glioblastoma dynamics
4
dynamics investigate
4
investigate three-dimensional
4
three-dimensional reaction-diffusion
4
model
4

Similar Publications