Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Early and accurate brain tumor classification is vital for clinical diagnosis and treatment. Although Convolutional Neural Networks (CNNs) are widely used in medical image analysis, they often struggle to focus on critical information adequately and have limited feature extraction capabilities. To address these challenges, this study proposes a novel Residual Network based on Multi-dimensional Attention and Pinwheel Convolution (Res-MAPNet) for Magnetic Resonance Imaging (MRI) based brain tumor classification. Res-MAPNet is developed on two key modules: the Coordinated Local Importance Enhancement Attention (CLIA) module and the Pinwheel-Shaped Attention Convolution (PSAConv) module. CLIA combines channel attention, spatial attention, and direction-aware positional encoding to focus on lesion areas. PSAConv enhances spatial feature perception through asymmetric padding and grouped convolution, expanding the receptive field for better feature extraction. The proposed model classifies two publicly brain tumor datasets into glioma, meningioma, pituitary tumor, and no tumor. The experimental results show that the proposed model achieves 99.51% accuracy in the three-classification task and 98.01% accuracy in the four-classification task, better than the existing mainstream models. Ablation studies validate the effectiveness of CLIA and PSAConv, which are 4.41% and 4.45% higher than the ConvNeXt baseline, respectively. This study provides an efficient and robust solution for brain tumor computer-aided diagnosis systems with potential for clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374982 | PMC |
http://dx.doi.org/10.1038/s41598-025-16564-7 | DOI Listing |