Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Metal surfaces play a key role in on-surface synthesis as they provide a two-dimensional catalytic reaction environment that stimulates activation, diffusion, and coupling of molecular reactants. Fundamental understanding of the interactions between surface atoms and reactants is very limited but would enable controlling on-surface reaction processes for designing functional nanomaterials. Here, we measure chemical interactions between CO-terminated tips and Cu(111), Ag(111), and Au(111) surface atoms in all spatial directions with picometer resolution via low temperature atomic force microscopy. This allows a site-specific quantification of the weak chemical interactions of densely packed metal surface atoms and provides a picture of the potential energy landscape experienced by adsorbed reactants. Accompanying density functional theory calculations and the crystal orbital overlap population method reveal small covalent binding contributions from orbital overlap of the corresponding p- and d-states of the CO tip and the metal surface atoms as the cause for the site-specific interactions. Accessing such small covalent bonding contributions in the background of the dispersion-dominated interaction enables revealing insights into the nature of chemical bond formation with metal surface atoms and a reliable determination of molecular adsorption sites. The latter can serve both as a starting point and as a direct comparison with theoretical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374979PMC
http://dx.doi.org/10.1038/s41467-025-63159-xDOI Listing

Publication Analysis

Top Keywords

surface atoms
24
metal surface
16
chemical interactions
12
weak chemical
8
molecular adsorption
8
adsorption sites
8
orbital overlap
8
small covalent
8
surface
6
atoms
6

Similar Publications

Hamiltonian Grid-Based QM/MM Method with Mean-Field Embedding for Simulating Arbitrary Slab Geometries.

J Chem Theory Comput

September 2025

Materials DX Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan.

The quantum mechanics/molecular mechanics (QM/MM) method is a powerful approach for investigating solid surfaces in contact with various types of media, since it allows for flexible modeling of complex interfaces while maintaining an all-atom representation. The mean-field QM/MM method is an average reaction field model within the QM/MM framework. The method addresses the challenges associated with the statistical sampling of interfacial atomic configurations of a medium and enables efficient calculation of free energies.

View Article and Find Full Text PDF

Ultrafast Correlation Energy Estimator.

J Phys Chem A

September 2025

Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.

A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.

View Article and Find Full Text PDF

On-Chip Emitter-Coupled Meta-Optics for Versatile Photon Sources.

Phys Rev Lett

August 2025

University of Southern Denmark, Centre for Nano Optics, Campusvej 55, Odense M DK-5230, Denmark.

Controlling the spontaneous emission of nanoscale quantum emitters (QEs) is crucial for developing advanced photon sources required in many areas of modern nanophotonics, including quantum information technologies. Conventional approaches to shaping photon emission are based on using bulky configurations, while approaches recently developed in quantum metaphotonics suffer from limited capabilities in achieving desired polarization states and directionality, failing to provide on-demand photon sources tailored precisely to technological needs. Here, we propose a universal approach to designing versatile photon sources using on-chip QE-coupled meta-optics that enable direct transformations of QE-excited surface plasmon polaritons into spatially propagating photon streams with arbitrary polarization states, directionality, and amplitudes via both resonance and geometric phases supplied by scattering meta-atoms.

View Article and Find Full Text PDF

Promoter-assisted chemical vapor deposition (CVD) has emerged as a robust strategy for the low-temperature synthesis of diverse transition metal dichalcogenides (TMDs). In these processes, promoter-induced intermediates facilitate specific reaction pathways, enabling controlled growth via vapor-solid-solid (VSS) or vapor-liquid-solid (VLS) modes. While previous studies have primarily focused on transition metal precursors, growth pathways involving engineered chalcogen-based intermediates remain underexplored due to their volatility and low melting points.

View Article and Find Full Text PDF

The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.

View Article and Find Full Text PDF