A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

ACAA1 knockout increases the survival rate of KPC mice by activating autophagy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objectives: We found that the levels of the peroxisomal fatty acid oxidation (FAO) marker in pancreatic ductal adenocarcinoma (PDAC) patients were higher than those in healthy individuals, based on tissue microarray analysis. This study investigates FAO in preclinical in vitro and in vivo models.

Methods: To examine the role of FAO in the peroxisome, we created acetyl-coenzyme A acyltransferase (ACAA1) knockout mice, crossed them with KPC mice, and monitored their survival rates. Additionally, we tested a mouse xenograft model with ACAA1 knockdown in human PDAC cells.

Results: In normal cells, ACAA1 knockdown did not affect oxygen consumption. In contrast, in PDAC cells, ACAA1 knockdown reduced the oxygen consumption rate by up to 60% and decreased ATP production by up to 70%. This suggests that peroxisomes in PDAC supply various acyl-carnitines for FAO in mitochondria. In PDAC cells, ACAA1 knockdown lowered ATP levels, resulting in mTOR inactivation and autophagy induction. Additionally, ACAA1 knockdown significantly increased LC3-II levels, leading to growth retardation in mouse xenograft models. Acaa1a mice showed a median survival increase of 3 weeks after crossing Acaa1a with KPC mice (Kras; Trp53Pdx1-Cre, a genetically engineered mice model for PDAC).

Conclusions: ACAA1 knockdown inhibited tumor growth by triggering autophagy, which supported the survival of KPC mice. The most important benefit of targeting ACAA1 is that it blocks tumor growth specifically in cancer cells without harming normal cell energy metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molmet.2025.102237DOI Listing

Publication Analysis

Top Keywords

acaa1 knockdown
24
kpc mice
16
cells acaa1
12
acaa1
9
acaa1 knockout
8
mouse xenograft
8
oxygen consumption
8
pdac cells
8
tumor growth
8
mice
7

Similar Publications