98%
921
2 minutes
20
Sensitization of wide bandgap semiconductors by coupling with a low-band-gap semiconductor to improve photoinduced charge carrier separation by the built-in electric field is one of the attractive approaches to develop an efficient photocatalyst. Here we present the development of Ag-ZnMnO/exfoliated g-CN (Ag-ZMO/ECN), a novel photocatalyst designed to remove an inorganic pollutant Cr(VI) under direct solar light irradiation. The enhanced performance of Ag-ZMO/ECN is attributed to efficient charge separation, facilitated by the formation of a p-n junction at the interface of narrow-bandgap p-type ZMO and n-type ECN, and the localized surface plasmon resonance (LSPR) effect of the deposited Ag nanoparticles. The Mott-Schottky plot of the composite revealed an inverted "V" shape, which is characteristic of a p-n junction, while UV-visible diffuse reflectance spectroscopy (UV-DRS) confirmed the LSPR effect, showing broad visible range absorption with Ag plasmon-related peaks between 400-500 nm. Photoluminescence (PL) studies and electrochemical impedance spectroscopy (EIS) results further validated that Ag-ZMO/ECN achieved the most effective charge separation and transport compared to pure ZMO, ECN, and ZMO/ECN. The pseudo-first-order rate constant for photocatalytic Cr(VI) reduction increased significantly from 0.01445 min⁻ when treated individually to 0.03779 min⁻ in the presence of methylene blue (MB) dye. This indicates a pronounced synergistic effect between the reduction of Cr(VI) and the oxidation of MB in the combined system. The enhanced photocatalytic performance of Ag-ZMO/ECN in this dual system compared to the individual system highlights its potential as an efficient photocatalyst for the simultaneous remediation of both inorganic and organic pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s43630-025-00769-w | DOI Listing |
ACS Nano
September 2025
School of Microelectronics, University of Science and Technology of China, Hefei, Anhui 230026, China.
Superlinear photodetectors hold significant potential in intelligent optical detection systems, such as near-field imaging. However, their current realization imposes stringent requirements on photosensitive materials, thereby limiting the flexibility of the device integration for practical applications. Herein, a tunable superlinear GaO deep-ultraviolet gate-all-around (GAA) phototransistor based on a p-n heterojunction has been proposed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute of Semiconductor Electronics (IHT), RWTH Aachen University, 52074 Aachen, Germany.
Hard entropy limits of impurity doping prevent further miniaturization of low nanoscale silicon-based very large scale integration (VLSI) devices, thereby obstructing the path toward more energy-efficient VLSI designs with higher yield in compute power. As demonstrated here by synchrotron UV photoelectron spectroscopy (UPS) and X-ray absorption spectroscopy in total fluorescence yield mode (XAS-TFY), intrinsic Si at the bottom of the nanoscale (i-nano-Si) turns into strong p- or n-Si by embedding in silicon nitride (SiN) or silicon dioxide (SiO), respectively. The associated Nanoscale Electronic Structure Shift Induced by Anions at Surfaces (NESSIAS) creates a p/n junction in i-nano-Si by the quantum-chemical impact of SiN- vs SiO-coating, providing energy landscapes to accumulate electrons (holes) when SiO- (SiN-) coated, with free charge carriers provided by metallic interconnects.
View Article and Find Full Text PDFJ Phys Condens Matter
September 2025
Humboldt-Universität zu Berlin, Department of Physics, Newtonstraße 15, 12489 Berlin, Germany.
The continuous miniaturization of semiconductor nanodevices necessitates advanced characterization techniques to probe their internal electrostatic potential under operational conditions. Off-axis electron holography (EH) enables quantitative mapping of phase shifts induced by electrostatic potentials, yet its application in operando transmission electron microscopy (TEM) is hindered by focused ion beam (FIB)-induced surface artifacts, such as amorphized layers and charge trapping, which distort the potential landscape, in addition to long-range electric stray fields. This study introduces an extended multilayer framework to efficiently model 3D electrostatic potential distributions in such FIB-prepared TEM-lamellae.
View Article and Find Full Text PDFPhotochem Photobiol Sci
August 2025
Department of Chemistry, School of Basic Sciences, Swami Vivekananda University, Kolkata, 700121, India.
Sensitization of wide bandgap semiconductors by coupling with a low-band-gap semiconductor to improve photoinduced charge carrier separation by the built-in electric field is one of the attractive approaches to develop an efficient photocatalyst. Here we present the development of Ag-ZnMnO/exfoliated g-CN (Ag-ZMO/ECN), a novel photocatalyst designed to remove an inorganic pollutant Cr(VI) under direct solar light irradiation. The enhanced performance of Ag-ZMO/ECN is attributed to efficient charge separation, facilitated by the formation of a p-n junction at the interface of narrow-bandgap p-type ZMO and n-type ECN, and the localized surface plasmon resonance (LSPR) effect of the deposited Ag nanoparticles.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Advanced Technology, Xi'an Jiaotong─Liverpool University, 215123 Suzhou, China.
Metal organic frameworks (MOFs), crystalline solids consisting of organic ligands and metal ions, have attracted increasing interest in various areas, including catalysis and biology. Functionalizable pore interiors and ultrahigh surface-to-volume ratios of MOFs make them excellent materials, especially for surface-enhanced Raman scattering (SERS) by the photoinduced charge transfer (PICT) between the MOFs and adsorbed molecules for SERS signal amplification. In our previous work, we demonstrated a p-n junction-assisted MOF substrate for enhancing the SERS signal through additional charge transfer, while the notable structural characteristics of MOFs benefit the SERS selectivity.
View Article and Find Full Text PDF