Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The increasing adoption of back-to-back built-up cold-formed steel (CFS) channel columns in construction is attributed to their lightweight nature, versatility in shape fabrication, ease of transportation, cost efficiency, and enhanced load-bearing capacity. Additionally, the incorporation of web openings facilitates the integration of electrical, plumbing, and heating systems. These built-up sections are widely utilized in wall studs, truss elements, and floor joists, with intermediate screw fasteners strategically positioned at regular intervals to prevent the independent buckling of channels. Based on 18 experimental tests, this study demonstrates an excellent correlation between finite element analysis and the experimental results, confirming the accuracy of geometrically and materially nonlinear finite element modeling in predicting the axial buckling strength of built-up short columns. Furthermore, the design standards of the American Iron and Steel Institute and Australian/New Zealand Standards were found to underestimate the axial load capacity by approximately 12.5%. The primary objective of this research is to investigate the influence of various hole configurations, both with and without stiffeners, on the axial performance of built-up short CFS channel columns. A total of 180 finite element models were developed, examining four different unstiffened and edge-stiffened hole configurations, validated against experimental results from plain webs. The findings reveal that web holes and edge stiffeners significantly impact axial load-bearing capacity, while the specific shape of the openings has a negligible effect. Specifically, introducing a hole at the centroid of each web results in an approximate 8.5% reduction in axial load capacity in the absence of edge stiffening. However, the incorporation of stiffeners around the perforations mitigates this reduction and enhances both structural efficiency and load-bearing capacity. These results highlight the critical role of edge stiffening in optimizing the structural performance of perforated built-up CFS columns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12371029 | PMC |
http://dx.doi.org/10.1038/s41598-025-15992-9 | DOI Listing |