Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Internal vectorised therapies, particularly with [177Lu]-labelled agents, are increasingly used for metastatic prostate cancer and neuroendocrine tumours. However, routine dosimetry for organs-at-risk and tumours remains limited due to the complexity and time requirements of current protocols.
Method: We developed a Generative Adversarial Network (GAN) to transform rapid 6 s SPECT projections into synthetic 30 s-equivalent projections. SPECT data from twenty patients and phantom acquisitions were collected at multiple time-points.
Results: The GAN accurately predicted 30 s projections, enabling estimation of time-integrated activities in kidneys and liver with maximum errors below 6 % and 1 %, respectively, compared to standard acquisitions. For tumours and phantom spheres, results were more variable. On phantom data, GAN-inferred reconstructions showed lower biases for spheres of 20, 8, and 1 mL (8.2 %, 6.9 %, and 21.7 %) compared to direct 6 s acquisitions (12.4 %, 20.4 %, and 24.0 %). However, in patient lesions, 37 segmented tumours showed higher median discrepancies in cumulated activity for the GAN (15.4 %) than for the 6 s approach (4.1 %).
Conclusion: Our preliminary results indicate that the GAN can provide reliable dosimetry for organs-at-risk, but further optimisation is needed for small lesion quantification. This approach could reduce SPECT acquisition time from 45 to 9 min for standard three-bed studies, potentially facilitating wider adoption of dosimetry in nuclear medicine and addressing challenges related to toxicity and cumulative absorbed doses in personalised radiopharmaceutical therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2025.105071 | DOI Listing |