98%
921
2 minutes
20
The shell of the nucleus accumbens (NAcSh) regulates motivation and reward via its dense projection to the ventral pallidum (VP). This ventral striatopallidal system has also been shown to regulate the activity of midbrain dopamine neurons and the release of dopamine in the NAcSh. The present study applied monosynaptic rabies tracing in the rat to quantify the brain-wide sources of synaptic input to neurons in the medial NAcSh that project to the ventromedial VP. The ventral subiculum of the hippocampus (vSub) was the largest source of input cells to the NAcSh-VP projection neurons. Anterograde tracing of vSub-NAcSh projection neurons demonstrated that their fibers terminated densely in the NAcSh largely avoiding other regions of the striatum. Another relatively strong source of input cells included the anterior part of the paraventricular nucleus of the thalamus (aPVT). The CA1, lateral septal nucleus, VP, paratenial thalamic nucleus, bed nucleus of the stria terminalis, lateral preoptic area and dorsomedial nucleus of the hypothalamus were moderately strong sources of input neurons. The prefrontal cortex, amygdala, and the basolateral nucleus of the amygdala were found to be relatively weak sources of input. A lack of sex differences for all the sources of input identified indicates that there is no apparent sexual dimorphism in the afferents to the striatopallidal system. In summary, the vSub and the aPVT are the major sources of cortical and thalamic monosynaptic inputs to the NAcSh-VP projection neurons where these inputs converge to regulate behavior and dopamine release in the NAcSh.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368940 | PMC |
http://dx.doi.org/10.1002/cne.70081 | DOI Listing |
PLoS Comput Biol
September 2025
Faculty of Science, Cognitive and Systems Neuroscience Group, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
Predictive coding (PC) proposes that our brains work as an inference machine, generating an internal model of the world and minimizing predictions errors (i.e., differences between external sensory evidence and internal prediction signals).
View Article and Find Full Text PDFFront Neural Circuits
September 2025
Faculty of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan.
Neuronal networks in animal brains are considered to realize specific filter functions through the precise configuration of synaptic weights, which are autonomously regulated without external supervision. In this study, we employ a single Hodgkin-Huxley-type neuron with autapses as a minimum model to computationally investigate how spike-timing-dependent plasticity (STDP) adjusts synaptic weights through recurrent feedback. The results show that the weights undergo oscillatory potentiation or depression with respect to autaptic delay and high-frequency stimulation.
View Article and Find Full Text PDFCommun Biol
September 2025
Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
Primate lateral intraparietal area (LIP) has been directly linked to perceptual categorization and decision-making. However, the intrinsic LIP circuitry that gives rise to the flexible generation of motor responses to sensory instruction remains unclear. Using retrograde tracers, we delineate two distinct operational compartments based on different intrinsic connectivity patterns of dorsal and ventral LIP.
View Article and Find Full Text PDFJ Neuroendocrinol
September 2025
Center for Research in Neuroscience, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
The maintenance of extracellular fluid (ECF) osmolality and sodium concentration ([Na]) near optimal "set point" values sustains physiological functions and prevents pathological states such as hypo- and hypernatremia. The peptide hormones vasopressin (antidiuretic hormone) and oxytocin (a natriuretic hormone in rats) play key roles in this process. These hormones are synthesized by hypothalamic magnocellular neurosecretory cells (MNCs) that project to the neurohypophysis and are released into the systemic circulation in response to rises in ECF osmolality or [Na].
View Article and Find Full Text PDFJ Neurosci
September 2025
Lendület Laboratory of Thalamus Research, HUN-REN Institute of Experimental Medicine; Budapest, Hungary
The paraventricular thalamic nucleus (PVT) integrates subcortical signals related to arousal, stress, addiction, and anxiety with top-down cortical influences. Increases or decreases in PVT activity exert profound, long-lasting effects on behavior related to motivation, addiction and homeostasis. Yet the sources of its subcortical excitatory and inhibitory afferents, their distribution within the PVT, and their integration with layer-specific cortical inputs remain unclear.
View Article and Find Full Text PDF