98%
921
2 minutes
20
The objective of the current study was to develop and optimize a novel lyophilized liposomal formulation of anticancer agent carmustine, or bis-chloroethyl nitrosourea (BCNU) for prolonged release that could overcome the dose-dependent side effects and improve its bioavailability at the site of action. The optimization was done using a 32 factorial design approach wherein soya phosphatidylcholine (SPC) and cholesterol (CH) as independent variables. The optimized formulation (F4) exhibited high entrapment efficiency (81.57%) with an average vesicle size of 141.7 nm and a -22.6 mV Zeta potential. In-vitro drug release studies from all formulations revealed that the BCNU was released for up to 36 hours following the Higuchi matrix release model. The TEM, FTIR, DSC, PXRD, and SEM analyses confirm the formation of liposomes. BCNU-loaded nanoliposomal formulation demonstrated prolonged release, suggesting that it could be used to supplement cancer therapy efficiently with a reduction in dose-dependent side effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.17344/acsi.2023.8002 | DOI Listing |
Food Sci Nutr
September 2025
Fats and Oils Department, Food Industries and Nutrition Research Institute National Research Centre Cairo Egypt.
This study developed a vegan chocolate spread using spray-dried plant-based milk powders (soy, lentil, and rice), fortified with nano-liposomal vitamin D3 and an oleogel-balanced omega fatty acid to enhance nutritional quality. The plant-based milk powders exhibited high protein (up to 26.8% in soy), fiber, and micronutrients.
View Article and Find Full Text PDFAdv Pharm Bull
July 2025
Cell Therapy Center, The University of Jordan, 11942, Amman, Jordan.
Purpose: Breast cancer is the leading cause of cancer-related deaths among women. Chemotherapy faces challenges such as systemic toxicity and multidrug resistance. Advances in nanotechnology have led researchers to develop safer and more efficient cancer treatment methods.
View Article and Find Full Text PDFDrug Dev Res
September 2025
Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
Liver cancer is the fourth most deadly cancer worldwide, but existing treatment options are insufficient, thus highlighting the urgent need for new therapeutic agents. Taxanes, known for their anticancer properties, provide a promising avenue for intervention. In this study, a tetracyclic taxane compound with antitumor activity (taxinine) was extracted and isolated from Taxus chinensis (T.
View Article and Find Full Text PDFDrug Dev Res
September 2025
School of Pharmacy, The University of Jordan, Amman, Jordan.
Cancer treatment faces challenges like nonselective toxicity and drug resistance, prompting the need for innovative therapies. This study aimed to develop liposomal formulations for co-delivery of empagliflozin and rutin, evaluating their anticancer and antioxidant efficacy. PEGylated empagliflozin-loaded nanoliposomes (Empa-NLs) and empagliflozin-rutin co-loaded nanoliposomes (Empa-Rut NLs) were synthesized using the thin-film hydration technique.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
August 2025
Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Research Organization for Health, Bogor, Indonesia.
Breast cancer remains highly prevalent due to its complex etiology. Curcumin, a natural compound with therapeutic potential, faces physicochemical limitations, leading to the development of its synthetic analog, pentagamavunon-6 (PGV-6). However, PGV-6's low aqueous solubility limits its efficacy, necessitating nanoliposome-based encapsulation to enhance its effectiveness.
View Article and Find Full Text PDF