Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Food waste (FW) is a critical global issue, exacerbating environmental degradation and resource scarcity. Traditional FW management methods are often inefficient and unsustainable. This review highlights advances in microbial community engineering for FW valorization, focusing on synthetic biology, metagenomics, metabolic engineering, and electro-fermentation. Engineered microbial consortia enhance the breakdown of complex organics while producing bioenergy, bioplastics, and organic acids. Metagenomics enables precise metabolic optimizations, and electro-fermentation improves bioconversion yields. These systems outperform conventional methods in reducing greenhouse gases, recovering nutrients, and promoting a circular bioeconomy. Challenges persist, including microbial stability, scalability, and incomplete knowledge of interspecies interactions. Future research should integrate AI and machine learning to design robust synthetic consortia and optimize metabolic pathways. Scaling electrochemical technologies (e.g., microbial electrosynthesis) requires further validation. Standardized biosafety protocols, techno-economic analyses, and supportive policies are essential for industrial adoption. Interdisciplinary collaboration is crucial to address these gaps. In conclusion, microbial engineering offers a sustainable FW management solution, improving biodegradation efficiency and resource recovery. Future efforts must prioritize scalable, stable systems with real-time monitoring and ecological safety. Overcoming these challenges will enable engineered microbes to mitigate environmental impacts, generate renewable energy, and advance a resource-efficient future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2025.127000DOI Listing

Publication Analysis

Top Keywords

microbial community
8
community engineering
8
food waste
8
microbial
6
"innovative approaches
4
approaches microbial
4
engineering
4
engineering food
4
waste management
4
management comprehensive
4

Similar Publications

Microbiome dysbiosis in reflux esophagitis has been extensively studied. However, limited research has examined microbiota across different segments of the upper gastrointestinal tract in reflux esophagitis. In this study, we investigated microbial alterations in three esophageal segments (upper, middle, and lower) and the gastric fundus of reflux esophagitis patients and healthy controls.

View Article and Find Full Text PDF

ABO blood group antigens influence host-microbe interactions and risk of early spontaneous preterm birth.

NPJ Biofilms Microbiomes

September 2025

Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.

The mechanisms by which vaginal microbiota shape spontaneous preterm birth (sPTB) risk remain poorly defined. Using electronic clinical records data from 74,913 maternities in conjunction with metaxanomic (n = 596) and immune profiling (n = 314) data, we show that the B blood group phenotype associates with increased risk of sPTB and adverse vaginal microbiota composition. The O blood group associates with sPTB in women who have a combination of a previous history of sPTB, an adverse vaginal microbial composition and pro-inflammatory cervicovaginal milieu.

View Article and Find Full Text PDF

Saikosaponin A (SSa) is an oleanane type triterpenoid saponin isolated from Radix Bupleuri (Bupleurum chinense DC). While SSa has demonstrated significant pharmacological activities including anti-inflammatory, antioxidant, and antidepressant effects, its pharmacokinetic profile remains poorly characterized. This study developed and validated a sensitive LC-MS/MS method for quantifying SSa in rat plasma.

View Article and Find Full Text PDF

Background: Improving the efficacy of anti-programmed death 1 (PD-1) monoclonal antibody (mAb) therapy remains a major challenge for cancer immunotherapy in non-small cell lung cancer (NSCLC). Gut microbial metabolites can influence immunotherapy efficacy.

Methods: ELISA was used to compare the serum 5-hydroxyindoleacetic acid (5-HIAA) level in patients with NSCLC.

View Article and Find Full Text PDF