Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present an alternative approach to estimating the cumulative incidence function that uses non-parametric multiple imputation to reduce the problem to that of estimating a binomial proportion. In the standard competing risks setting, we show mathematically and empirically that our imputation-based estimator is equivalent to the Aalen-Johansen estimator of the cumulative incidence given a sufficient number of imputations. However, our approach allows for the use of a wider variety of methods for the analysis of binary outcomes, including preferred options for uncertainty estimation. While we focus on the cumulative incidence function, the multiple imputation approach likely extends to more complex problems in competing risks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360614 | PMC |
http://dx.doi.org/10.1080/00031305.2025.2453674 | DOI Listing |