A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

FACS-Sortable Triple Emulsion Picoreactors for Screening Reactions in Biphasic Environments. | LitMetric

FACS-Sortable Triple Emulsion Picoreactors for Screening Reactions in Biphasic Environments.

Adv Mater Interfaces

Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.

Published: February 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biphasic environments can enable successful chemical reactions where any single solvent results in poor substrate solubility or poor catalyst reactivity. For screening biphasic reactions at high throughput, a platform based on microfluidic double emulsions can use widely available FACS (Fluorescence Activated Cell Sorting) machines to screen millions of picoliter reactors in a few hours. However, encapsulating biphasic reactions within double emulsions to form FACS-sortable droplet picoreactors requires optimized solvent phases and surfactants to produce triple emulsion droplets that are stable over multi-hour assays and compatible with desired reaction conditions. This work demonstrates such FACS-sortable triple emulsion picoreactors with a fluorocarbon shell and biphasic octanol-in-water core. First, surfactants are screened to stabilize octanol-in-water emulsions for the picoreactor core. With these optimized conditions, stable triple emulsion picoreactors (>70% of droplets survived to 24 hr), produced protein in the biphasic core via cell-free protein synthesis are generated, and sorted these triple emulsions based on fluorescence using a commercial FACS sorter at >100 Hz with 75-80% of droplets recovered. Finally, an in-droplet lipase assay with a fluorogenic resorufin substrate that partitions into octanol is demonstrated. These triple emulsion picoreactors have the potential for future screening bead-encoded catalyst libraries, including enzymes such as lipases for biofuel production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12360416PMC
http://dx.doi.org/10.1002/admi.202400403DOI Listing

Publication Analysis

Top Keywords

triple emulsion
20
emulsion picoreactors
16
facs-sortable triple
8
biphasic environments
8
biphasic reactions
8
double emulsions
8
biphasic
6
emulsion
5
picoreactors
5
triple
5

Similar Publications