98%
921
2 minutes
20
In seasonally snow-covered ecosystems, changing temperatures and snowpack dynamics under climate change have increased the occurrence and duration of soil temperatures that support microbial activity during plant dormancy. During these periods of microbial activity without plant activity (i.e., plant-microbe asynchronies), soil nutrients that build up are vulnerable to leaching loss, with potentially important consequences for ecosystem productivity. Furthermore, asynchronies likely do not occur uniformly in space; rather, their occurrence may be modulated by subsurface characteristics. Soil texture, for example, moderates biogeochemical cycles and water holding capacity, and could mitigate or exacerbate nutrient losses during plant-microbe asynchronies. Here, we quantified how climate change treatments and soil characteristics alter the synchrony of plant and microbial activity, and the associated impacts on leaching of soil nutrients-carbon, nitrogen, phosphorus-and cations prone to mobilization following environmental perturbation-calcium, magnesium, and aluminum. To do this, we conducted a forest sapling mesocosm experiment that imposed replicated warming and snow exclusion treatments on two soils. To estimate the extent and effect of asynchrony, we measured soil temperature and plant phenology over 2 years to develop an index for asynchrony duration, which we correlated with measured nutrient and cation leachate losses. We found that warming consistently increased the duration of plant-microbe asynchrony, with an average increase of 25% across the experiment. Snow exclusion shortened asynchrony duration by 8% on coarse soils in the second year of the experiment. Climate treatments generally elevated nutrient losses from fine but not coarse soils during asynchronies. Longer asynchronies resulted in increased carbon, nitrogen, and magnesium losses, with variation across time, soil type, and nutrient. Our results demonstrate that longer periods of microbial activity in the absence of plant uptake generally compound nutrient losses, but the magnitude of these losses depends on soil type and individual nutrients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365583 | PMC |
http://dx.doi.org/10.1111/gcb.70447 | DOI Listing |
Environ Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDFACS Omega
September 2025
College of Science & College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
Pesticides are of great significance in ensuring food yield. However, the extensive use of pesticides has led to severe environmental pollution and significant economic losses. Chitosan-based pesticide delivery systems potentially present a favorable approach to enhance pesticide using efficiency.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Department of Vegetable and Mushroom Growing, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary.
Horticultural crops are increasingly exposed to simultaneous abiotic stresses such as drought, salinity, and temperature extremes, which often exacerbate each other's effects, leading to severe yield and quality losses. Addressing these multifaceted challenges necessitates the development and application of integrated and innovative strategies. This review highlights recent advancements in methodologies to enhance the resilience of horticultural crops against combined abiotic stresses.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Department of Biology & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal.
Maize (Zea mays L.) is one of the world's most widely cultivated and economically important cereal crop, serving as a staple food and feed source in over 170 countries. However, its global productivity is threatened by late wilt disease (LWD), a disease caused by Magnaporthiopsis maydis, that spreads through soil and seeds and can cause severe yield losses.
View Article and Find Full Text PDFClin Nutr
August 2025
Department of Nephrology, Naval Medical Center of the People's Liberation Amy (PLA), Naval Medical University, Shanghai, China. Electronic address:
Background: Micronutrient deficiencies are common in patients undergoing maintenance hemodialysis (MHD), potentially contributing to adverse clinical outcomes. Hemodiafiltration with endogenous reinfusion (HFR) integrates convection, diffusion, and adsorption, potentially preserving essential nutrients better than traditional online hemodiafiltration (HDF). This study aimed to compare the acute effects of HFR and HDF on serum micronutrient concentrations in MHD patients.
View Article and Find Full Text PDF