Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The bacterial HslVU enzyme complex consists of two components: the HslV protease and the HslU ATPase. This complex share both structural and sequence similarities with the eukaryotic proteasome. HslV becomes functionally active upon engagement with HslU, which inserts its C-terminal helix into a conserved groove within the HslV dimer. This interaction triggers allosteric modulation, thereby initiating HslV's proteolytic activity. Because the HslVU system is present in pathogenic bacteria but absent in humans, it represents a promising target for antibacterial drug development. This study focuses on the discovery of small molecules that hyperactivate HslV, leading to excessive protein degradation in harmful bacterial strains. By integrating computational modeling with laboratory assays, four triazine-based compounds were identified as potent activators of HslV. These molecules demonstrated high binding affinity in docking simulations, favorable interaction profiles, and significant activation in biochemical assays. Their ED₅₀ values ranged from 0.37 μM to 0.55 μM, indicating strong potency. Furthermore, ADMET evaluations revealed desirable pharmacokinetic and drug-likeness properties. Overall, this work presents effective, non-peptidic small-molecule activators of the HslV protease and provides new insights into chemical modulation of the HslVU system, offering a promising avenue for antibacterial drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10930-025-10286-5 | DOI Listing |