A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Revealing the Bacterial HslV Protease Activation Potential with Triazine Derivatives via Experimental and Computational Approaches. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The bacterial HslVU enzyme complex consists of two components: the HslV protease and the HslU ATPase. This complex share both structural and sequence similarities with the eukaryotic proteasome. HslV becomes functionally active upon engagement with HslU, which inserts its C-terminal helix into a conserved groove within the HslV dimer. This interaction triggers allosteric modulation, thereby initiating HslV's proteolytic activity. Because the HslVU system is present in pathogenic bacteria but absent in humans, it represents a promising target for antibacterial drug development. This study focuses on the discovery of small molecules that hyperactivate HslV, leading to excessive protein degradation in harmful bacterial strains. By integrating computational modeling with laboratory assays, four triazine-based compounds were identified as potent activators of HslV. These molecules demonstrated high binding affinity in docking simulations, favorable interaction profiles, and significant activation in biochemical assays. Their ED₅₀ values ranged from 0.37 μM to 0.55 μM, indicating strong potency. Furthermore, ADMET evaluations revealed desirable pharmacokinetic and drug-likeness properties. Overall, this work presents effective, non-peptidic small-molecule activators of the HslV protease and provides new insights into chemical modulation of the HslVU system, offering a promising avenue for antibacterial drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10930-025-10286-5DOI Listing

Publication Analysis

Top Keywords

hslv protease
12
hslvu system
8
antibacterial drug
8
activators hslv
8
hslv
7
revealing bacterial
4
bacterial hslv
4
protease activation
4
activation potential
4
potential triazine
4

Similar Publications