A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

The chronODE framework for modelling multi-omic time series with ordinary differential equations and machine learning. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many genome-wide studies capture isolated moments in cell differentiation or organismal development. Conversely, longitudinal studies provide a more direct way to study these kinetic processes. Here, we present an approach for modeling gene-expression and chromatin kinetics from such studies: chronODE, an interpretable framework based on ordinary differential equations. chronODE incorporates two parameters that capture biophysical constraints governing the initial cooperativity and later saturation in gene expression. These parameters group genes into three major kinetic patterns: accelerators, switchers, and decelerators. Applying chronODE to bulk and single-cell time-series data from mouse brain development reveals that most genes (~87%) follow simple logistic kinetics. Among them, genes with rapid acceleration and high saturation values are rare, highlighting biochemical limitations that prevent cells from attaining both simultaneously. Early- and late-emerging cell types display distinct kinetic patterns, with essential genes ramping up faster. Extending chronODE to chromatin, we find that genes regulated by both enhancer and silencer cis-regulatory elements are enriched in brain-specific functions. Finally, we develop a bidirectional recurrent neural network to predict changes in gene expression from corresponding chromatin changes, successfully capturing the cumulative effect of multiple regulatory elements. Overall, our framework allows investigation of the kinetics of gene regulation in diverse biological systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12365117PMC
http://dx.doi.org/10.1038/s41467-025-61921-9DOI Listing

Publication Analysis

Top Keywords

ordinary differential
8
differential equations
8
gene expression
8
kinetic patterns
8
chronode
5
genes
5
chronode framework
4
framework modelling
4
modelling multi-omic
4
multi-omic time
4

Similar Publications