Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Shrimp maturation is governed by the hormones secreted by neurosecretory structures in the eyestalk known as X-organ sinus gland complex (XOSG). The X-organ consists of a cluster of neurosecretory cells responsible for synthesizing crustacean hyperglycemic family hormones, including crustacean hyperglycemic hormone (CHH), molt inhibiting hormone (MIH), and gonad inhibiting hormone (GIH). CHH family neuropeptides have gained attention for three decades due to their endocrinological role in aquaculture. One of the most challenging tools in crustacean endocrinology research was the unavailability of a crustacean cell line. Recently, a novel hybrid cell line, the PmLyO-Sf9, was developed by fusing Penaeus monodon lymphoid organ cells with Sf9 cells. Focusing on this cell line, we undertook a comprehensive analysis of the transcriptional and translational expression profiling of CHH/MIH/GIH neuropeptides in the PmLyO-Sf9. In the transcriptional expression studies, the cDNA-based gene profiling of CHH (235 bp), MIH (243 bp), and GIH (247 bp) was determined. A comparative gene expression of CHH/MIH/GIH in PmLyO-Sf9 cell line and Lymphoid organ in Penaeus monodon revealed consistent expression in both. Immunofluorescence confirmed the translational expression of CHH/MIH/GIH with immune-positive cells exhibiting neuropeptides localized in the cytoplasm of PmLyO-Sf9 cells. This is the first study that proved the presence of CHH family neuropeptides in PmLyO-Sf9 cell line and in the Lymphoid organ of Penaeus monodon, hitherto not reported. Accordingly, the cell line has been identified as a suitable platform for endocrinological expression, with potential applications in lieu of animal model.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10126-025-10505-1DOI Listing

Publication Analysis

Top Keywords

pmlyo-sf9 cell
12
penaeus monodon
12
lymphoid organ
12
transcriptional translational
8
crustacean hyperglycemic
8
inhibiting hormone
8
chh family
8
family neuropeptides
8
translational expression
8
neuropeptides pmlyo-sf9
8

Similar Publications

Shrimp maturation is governed by the hormones secreted by neurosecretory structures in the eyestalk known as X-organ sinus gland complex (XOSG). The X-organ consists of a cluster of neurosecretory cells responsible for synthesizing crustacean hyperglycemic family hormones, including crustacean hyperglycemic hormone (CHH), molt inhibiting hormone (MIH), and gonad inhibiting hormone (GIH). CHH family neuropeptides have gained attention for three decades due to their endocrinological role in aquaculture.

View Article and Find Full Text PDF

Vibrio harveyi causes vibriosis, leading to high mortality and economic loss in global aquaculture. Quorum sensing (QS) driven biofilm formation makes them more resistant to various control measures. This study examined QS inhibition (QSI) of V.

View Article and Find Full Text PDF

Penaeus stylirostris penstyldensovirus (PstDV1) is one of the significant shrimp parvovirus which causes runt deformity syndrome in shrimps. In the current study, we attempted to elucidate the replication cycle of the virus in PmLyO-Sf9 cells. PstDV1 needs 4-5 h to complete replication in the cell line and release.

View Article and Find Full Text PDF

Infectious hypodermal hematopoietic necrosis virus (IHHNV/PstDVI) was isolated and propagated in the hybrid shrimp-insect cell line PmLyO-Sf9. A few hours after inoculation with an infected tissue extract or virus suspension, cytopathic changes could be observed in the cell line, including clustering, enlargement, syncytium formation, granulation, vacuole formation, tapering, irregularities in the plasma membrane with extended tails, detachment, cell death, and accumulation of cellular debris. Expression of viral genes, the presence of virions, and cytological changes observed using transmission electron microscopy suggested replication of the virus in these cells.

View Article and Find Full Text PDF

Shrimp progressively gets more attention among marine invertebrates from researchers all over the world due to it being a healthy food as well as having economic importance. There were a lot of attempts to develop a continuous cell line from shrimp but none successful. In this context a novel hybrid cell line named 'PmLyO-Sf9' could be developed by fusing shrimp lymphoid organ cells with Sf9 cells after to metabolic blocking of Sf9 cells using puromycin and actinomycin D and effecting the fusion by way of PEG application.

View Article and Find Full Text PDF