Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We investigate complete wetting and drying at sinusoidally corrugated solid walls, focusing on the effects of wall geometry and interaction range. Two distinct interaction models are considered: one incorporating only short-ranged (SR) forces (applied to drying), and another including long-ranged (LR) van der Waals interactions (applied to wetting). The SR model is analyzed within the framework of nonlocal Hamiltonian theory by Parry et al., while the LR model is treated using a sharp-kink approximation. In both cases we derive scaling relations that describe the dependence of the adsorbed layer's width and morphology on the wall's geometric parameters as the system approaches two-phase coexistence. We identify distinct scaling regimes determined by the degree of wall corrugation and highlight the contrasting effects of SR and LR interactions. Theoretical predictions are corroborated by numerical results from classical density functional theory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/2d7c-6t3t | DOI Listing |