98%
921
2 minutes
20
Biodiversity is essential for sustaining ecosystem multifunctionality (EMF), yet its role in natural ecosystems remains uncertain because various environmental drivers, alongside biodiversity, influence EMF, complicating the empirical biodiversity-EMF relationship. Additionally, the effects of biodiversity and environmental drivers on EMF likely vary across temporal scales, making this relationship inherently scale-dependent. Over nine years, we conducted a biweekly sampling, measuring microbial diversity, EMF (via 31 carbon utilisation functions), and various environmental variables in a subtropical freshwater ecosystem. Our analysis across inter-annual, seasonal, and short-term scales revealed that biodiversity consistently enhances EMF at all scales, while environmental drivers such as precipitation, temperature, and phosphate influenced EMF only at specific scales (short-term, seasonal, and inter-annual, respectively). Importantly, biodiversity mediated these environmental impacts, reinforcing its central role in maintaining EMF. These findings highlight biodiversity as a critical pillar for EMF across scales, underscoring the importance of conserving biodiversity to sustain EMF amid multifaceted environmental changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.70185 | DOI Listing |
Environ Sci Technol
September 2025
The Grainger College of Engineering, Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Wastewater solids management is a key contributor to the operational cost and greenhouse gas (GHG) emissions of water resource recovery facilities (WRRFs). This study proposes a 'waste-to-energy' strategy using a hydrothermal liquefaction (HTL)-based system to displace conventional energy- and emission-intensive practices. The proposed system directs HTL-produced biocrude to oil refineries and recovers regionally tailored nitrogen and phosphorus fertilizers.
View Article and Find Full Text PDFJ Pathol
September 2025
Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University, Baltimore, MD, USA.
Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR), and HER2, and remains one of the most aggressive and therapeutically challenging breast cancer subtypes, marked by early relapse, metastasis, and limited targeted treatment options. In a recent study published in The Journal of Pathology, Kuo et al provide compelling evidence that nicotine exposure, whether from tobacco smoke or e-cigarette vapor, drives TNBC progression by promoting stem-like and metastatic phenotypes. Integrating clinical datasets, patient tissues, cell lines, and in vivo models, the authors demonstrate that nicotine enhances tumor aggressiveness via coordinated upregulation of CHRNA9 and IGF1R.
View Article and Find Full Text PDFBackground And Aims: Trait-based approaches have advanced our understanding of plant strategies, yet they often focus on leaf-level traits, overlooking the functional roles of stem anatomy and twig characteristics. We investigated intraspecific trait variation in Salix flabellaris, an alpine dwarf shrub, along climatic gradients in the Himalayas. Our goal was to identify distinct axes of trait variation related to stem, twig, and leaf traits, assess their environmental drivers, and evaluate population-specific growth responses to recent climate change.
View Article and Find Full Text PDFEcol Lett
September 2025
Department of Biology, University of Florida, Gainesville, Florida, USA.
Animal migration remains poorly understood for many organisms, impeding understanding of movement dynamics and limiting conservation actions. We develop a framework that scales from movements of individuals to the dynamics of continental migration using data synthesis of endogenous markers, which we apply to three North American bat species with unexplained high rates of fatalities at wind energy facilities. The two species experiencing the highest fatality rates exhibit a "pell-mell" migration strategy in which individuals move from summer habitats in multiple directions, both to higher and lower latitudes, during autumn.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
The disparity between the global increase in life expectancy and the steady decline in health outcomes with age has been a major driver for developing new ways to research aging. Although this current tools for studying aging outside of the human body-such as animal models and cells in a dish-have improved this fundamental understanding of the markers and key mechanisms underlying this process, several limitations remain. Animal models are poor biological representations of humans and have a weak track record of translating pre-clinical results into successful clinical applications.
View Article and Find Full Text PDF