Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Understanding how immune cells organize within tissue microenvironments is essential for interpreting disease responses in spatial proteomics data. We introduce SNOWFLAKE, a graph neural network pipeline that integrates single-cell protein expression and morphological features to predict disease status from lymphoid follicles. Using a pediatric COVID-19 dataset, SNOWFLAKE outperformed conventional machine learning and deep learning approaches in classifying infection status. By incorporating morphology into graph edge features, SNOWFLAKE enables the identification of spatially organized subgraphs associated with disease. These subgraphs, derived from single-cell neighborhoods, display clear distinctions between COVID-positive and negative cases and reveal interpretable cellular motifs. SNOWFLAKE's ability to extract meaningful subgraph embeddings highlights its value in understanding immune architecture and its alterations in disease. The approach generalizes across tissue types, including breast cancer and tertiary lymphoid structures, underscoring its utility for spatial systems biology and biomarker discovery from multiplex imaging data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356389 | PMC |
http://dx.doi.org/10.1016/j.isci.2025.113204 | DOI Listing |