Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The human brain's efficiency and adaptability in processing information is largely attributed to spatiotemporal spiking activities and intrinsic plasticity-the ability of neurons to autonomously modulate their excitability. Mott memristors, with their threshold switching characteristics, have been effectively utilized as artificial neurons, or neuristors, to generate spiking activities. However, the implementation of intrinsic plasticity and its significance in neuromorphic computing has yet to be systematically explored. Here, a frequency switching (FS) neuristor is presented that emulates neuron's intrinsic plasticity characteristics. By combining a volatile Mott memristor with a non-volatile valence change memory (VCM) memristor, the FS neuristor achieves programmable multi-level frequency-voltage (f-V) characteristics analogous to the transfer functions of neuronal intrinsic plasticity. Through device-based simulations of sparse neural networks, it is proposed that this intrinsic plasticity acts as memory and processor itself, enhancing network performance and reducing energy consumption. Additionally, intrinsic plasticity endows the network with structural plasticity, enabling full recovery of the network's performance after random neuron damage, suggesting a pathway toward more adaptive and resilient neuromorphic computing systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202502255DOI Listing

Publication Analysis

Top Keywords

intrinsic plasticity
24
neuromorphic computing
12
frequency switching
8
switching neuristor
8
plasticity enabling
8
spiking activities
8
intrinsic
7
plasticity
7
neuristor realizing
4
realizing intrinsic
4

Similar Publications

Long-term maintenance of somatic stem cells relies on precise regulation of self-renewal and differentiation. Understanding the molecular framework for these homeostatic processes is essential for improved cellular therapies and treatment of myeloid neoplasms. CUX1 is a widely expressed, dosage-sensitive transcription factor crucial in development and frequently deleted in myeloid neoplasia in the context of -7/(del7q).

View Article and Find Full Text PDF

Intrinsic genetic alterations and dynamic transcriptional changes contribute to the heterogeneity of solid tumors. Lung adenocarcinoma (LUAD) is characterized by its significant histological, cellular and molecular heterogeneity. The present study aimed to study the spatial transcriptomics of primary LUAD with initial hopes to decipher molecular characteristics of subtype transitions in LUAD progression, offering new insights for novel therapeutic strategies.

View Article and Find Full Text PDF

Factors affecting locomotor plasticity in Rhodnius prolixus.

J Insect Physiol

September 2025

Instituto René Rachou, Avenida Augusto de Lima, 1715, CEP 30190-009, Belo Horizonte, Minas Gerais, Brazil. Electronic address:

Triatomines are vectors of Trypanosoma cruzi, the causative agent of Chagas disease. Their locomotor activity is influenced by endogenous and exogenous factors, but whether individual behavioral profiles persist across developmental stages remains unclear. This study evaluated non-oriented locomotor activity in Rhodnius prolixus under varying nutritional states (short-fasting, long-fasting, fed), developmental stages (5th instar nymphs and adults), sex (males and females), and light phase (photophase vs.

View Article and Find Full Text PDF

Aging-related adaptations of metabotropic glutamate receptors within the CA3 region of the rat hippocampus.

Neurobiol Aging

September 2025

Departamento de Farmacobiología. Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 14330, Mexico. Electronic address:

The physiological decline associated with aging is often accompanied by a progressive deterioration in cognitive processing abilities driven by a series of cellular dysfunctions that remain poorly understood. In the hippocampus, a critical area for learning and memory, aging affects the functional expression of ionotropic and metabotropic receptors, including the metabotropic glutamate receptors (mGluRs). mGluRs play a critical role in multiple cellular functions, including modulation of ion channels and intrinsic excitability, synaptic transmission, and induction of synaptic plasticity, processes considered part of the cellular substrates for learning and memory.

View Article and Find Full Text PDF

Many Arctic fishes experience prolonged periods of extreme cold and large thermal variation over both rapid and seasonal time scales which challenge critical physiological functions. In the central Canadian Arctic, we caught wild adult lake trout (Salvelinus namaycush) acclimatized to winter and summer temperatures to determine the extent to which they seasonally adjust cardiac thermal performance and adrenergic control. We assessed the intrinsic and maximum heart rate (f and f) of anaesthetised fish through cholinergic blockade and either adrenergic blockade (f) or stimulation (f) during acute warming.

View Article and Find Full Text PDF