98%
921
2 minutes
20
Mycorrhiza interplays with the microbiome in adaptation to environmental fluctuation, yet how arbuscular mycorrhizal fungi (AMF) and the associated microbiome respond to nitrogen addition remains poorly understood. Here, we addressed this gap by conducting amplicon sequencing of AMF 18S rRNA and bacterial 16S rRNA operons, along with shotgun metagenome sequencing, using soil samples collected from a semiarid grassland that has received nitrogen inputs for 11 years at different levels. We found that the nitrogen response of the AMF community was characterized by a negative association whereby increasing nitrogen addition leads to higher beta diversity and lower alpha diversity. Multiple co-inertia analyses revealed a coordinated response of the AMF community, bacterial community, and bacterial functions to nitrogen addition, which as a whole was strongly related to soil phosphorus availability. Besides, through network analysis of AMF with bacteria and bacterial functional genes, we found that nitrogen addition selected Actinobacteria and enriched functions of transporters, amino acid synthesis and metabolism, and replication repair, whereas there was no evidence for the enrichment of phosphorus mineralization functions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356944 | PMC |
http://dx.doi.org/10.1038/s42003-025-08681-w | DOI Listing |
Water Res
August 2025
Guangzhou Landscape Architecture Group Co., Ltd., Guangzhou 510000, PR China; Guangzhou Municipal Construction Group Co., Ltd., Guangzhou 510030, PR China.
Enhanced ammonium (10.6 - 14.7%) and total inorganic nitrogen (TIN, 4.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China.
Overcoming the persistent challenges of high operating temperatures and poor selectivity in metal oxide semiconductor (MOS) gas sensors, this work enhances defect sites in the sensing material through heterostructure construction and builds mesoporous architectures using MOF-derived carbon skeletons as templates. The synergistic effects of multiple mechanisms significantly improve gas-sensing performance, successfully fabricating a ZnO/PCS flexible room-temperature gas sensor with exceptional room-temperature DMF detection capabilities. The nitrogen-containing porous carbon skeletons (PCSs) template shows a stable mesoporous microstructure with large pore volume.
View Article and Find Full Text PDFRev Argent Microbiol
September 2025
IPICYT, División de Biología Molecular, Laboratorio de Genómica Funcional y Comparativa, Camino a la Presa San José 2055, Col. Lomas 4 Sección, 78216 San Luis Potosí, SLP, Mexico.
Fungal diseases in agricultural crops cause economic losses, with chemical control being the conventional method to manage them. However, this approach negatively impacts both the environment and human health. This study focused on endophytic fungi isolated from the roots of Ceratozamia mirandae in the Mexican locality of Juan Sabines (Villa Corzo, Chiapas).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Faculty of Agronomy and Agricultural Sciences, University of Dschang, PO. Box 222, Dschang, Cameroon.
Dissolved organic matter (DOM) plays a key role in grassland carbon biogeochemistry and shows sensitivity to global climate change, particularly nitrogen (N) deposition. We investigated the soil DOM molecular composition by UV-Vis and fluorescence spectroscopy, and FT-ICR MS through a N addition experiment (CK, N5, N10, N20, and N40 [0, 5, 10, 20, and 40 g N m-2 year-1, respectively]) in a desert steppe of northwest China. Moderate N inputs (N5-N20) caused a dose-dependent increase in DOM content (9.
View Article and Find Full Text PDFExp Cell Res
September 2025
Department of Nephrology, The First Hospital of China Medical University, Shenyang 110004 Liaoning Province, China. Electronic address:
Renal fibrosis is the common pathological outcome of chronic kidney disease (CKD) progressing into end-stage renal disease. The excessive proliferation of fibroblasts plays an important role in the CKD progression. Nutrients such as amino acids and their transportation are essential for cell proliferation.
View Article and Find Full Text PDF