Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The key objective of this study is to propose an effective and accurate deep learning (DL) framework to detect and classify diseases in banana, cherry, and tomato leaves. The performance of multiple pre-trained models is compared against a newly presented model.The experiments used a publicly released dataset of healthy and unhealthy leaves from banana, cherry, and tomato plants. This dataset was uniformly split into training, validation, and test sets to obtain consistent and unbiased model evaluations. The data pre-processing also involved pre-processing steps suitable for DL architectures to keep the input the same among all the models.We use several state-of-the-art pre-trained ConvNets models for the baselines, such as EfficientNetV2, ConvNeXt, Swin Transformer, and Vi-Transformer (ViT), to have an outlook on the performance. A new ConvNet-ViT hybrid model combines the ConvNet and ViT layers for local feature extraction and maintaining the global context. The classifier's performance was reinforced by a 5-fold cross-validation mechanism to avoid overfitting.The proposed Hybrid ConvNet-ViT model outperformed all the compared models evaluated, achieving a testing classification accuracy of 99.29%, which outperforms all the pre-trained models. This finding shows that combining ConvNets' local feature learning with the capability of global representation of the ViT is effective.The result shows that the Hybrid ConvNet-ViT model is an effective and accurate solution in detecting and classifying plant leaf diseases. Its outstanding performance of the state-of-the-art pre-trained top models positions itself as a solid model for practical agricultural use. Fusing the ConvNet and transformer frameworks jointly is beneficial for improving classification performance in image-based disease detection work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12356958PMC
http://dx.doi.org/10.1038/s41598-025-14847-7DOI Listing

Publication Analysis

Top Keywords

deep learning
8
effective accurate
8
banana cherry
8
state-of-the-art pre-trained
8
local feature
8
hybrid convnet-vit
8
convnet-vit model
8
performance
5
model
5
robust multiclass
4

Similar Publications

Neuroimaging Data Informed Mood and Psychosis Diagnosis Using an Ensemble Deep Multimodal Framework.

Hum Brain Mapp

September 2025

Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA.

Investigating neuroimaging data to identify brain-based markers of mental illnesses has gained significant attention. Nevertheless, these endeavors encounter challenges arising from a reliance on symptoms and self-report assessments in making an initial diagnosis. The absence of biological data to delineate nosological categories hinders the provision of additional neurobiological insights into these disorders.

View Article and Find Full Text PDF

A robust deep learning-driven framework for detecting Parkinson's disease using EEG.

Comput Methods Biomech Biomed Engin

September 2025

Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India.

Parkinson's disease (PD) is a neurodegenerative condition that impairs motor functions. Accurate and early diagnosis is essential for enhancing well-being and ensuring effective treatment. This study proposes a deep learning-based approach for PD detection using EEG signals.

View Article and Find Full Text PDF

Introduction: Pulmonary embolism (PE) is a life-threatening condition with well-defined management strategies; however, the presence of a clot-in-transit (CIT)-a mobile thrombus within the right heart-introduces a uniquely high-risk scenario associated with a significantly elevated mortality rate. While several therapeutic approaches are available-including anticoagulation, systemic thrombolysis, surgical embolectomy, and catheter-directed therapies-there is no established consensus on a superior treatment modality. Catheter-based mechanical thrombectomy has emerged as a promising, minimally invasive alternative that mitigates the bleeding risks of systemic thrombolysis and the invasiveness of surgery.

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Background: In clinical practice, digital subtraction angiography (DSA) often suffers from misregistration artifact resulting from voluntary, respiratory, and cardiac motion during acquisition. Most prior efforts to register the background DSA mask to subsequent postcontrast images rely on key point registration using iterative optimization, which has limited real-time application.

Purpose: Leveraging state-of-the-art, unsupervised deep learning, we aim to develop a fast, deformable registration model to substantially reduce DSA misregistration in craniocervical angiography without compromising spatial resolution or introducing new artifacts.

View Article and Find Full Text PDF