Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Rare genetic diseases pose significant diagnostic challenges, especially in geographically isolated populations where consanguinity, founder effects, and novel variants often influence disease patterns. Whole-exome sequencing (WES) is standard practice for rare disease diagnostics, but its limited coverage of noncoding regions limits inheritance-by-descent (IBD) and Runs of Homozygosity (RoH) inference. In this study, we tested an imputation-enhanced IBD and RoH detection method using WES data of 84 individuals from 51 families in Boyacá, Colombia-an Andean region with complex admixed American ancestry. By leveraging large, multi-ancestry reference panels to impute genotypes and increase variant distribution, we achieved improved detection of IBD and RoH regions, with KING showing the best results among the different tools that were tested. Imputation with the 1000 Genome reference panel underperformed compared to raw WES data, whereas large reference panels with diverse ancestry showed the best performance. By integrating these refined IBD results with pedigree information, we identified cryptic family relationships, clarified the role of consanguinity, and improved the prioritization of candidate variants. Our findings show that imputation-enhanced IBD analyses can bolster the utility of WES for rare disease studies, contributing to more accurate and timely genetic diagnoses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddaf132 | DOI Listing |