Tunable directional thermal emission using a phase change material-based multilayer structure.

Nanoscale Horiz

Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The directional and spectral control of thermal emission with a tunable angular range is essential for realizing next-generation smart thermal emitters. However, existing photonic strategy-based thermal emitters manage thermal emission only over a fixed angular range. Here, we present a lossless chalcogenide phase change material (PCM)-based tunable multilayer structure as a thermal emitter for actively regulating angular selectivity in thermal emission. We develop a tunable multilayer stack with a thickness of 1.35 μm by layering alternating thin films of SiO and a high-crystallization-temperature PCM, such as SbS. The principle underlying the proposed tunable directional control of thermal emission relies on the tunable Brewster mode within the SiO-SbS multilayer cavity. For -polarized light, the cavity exhibits maximum emissivity across a broad spectral band (10-18 μm) around the Brewster angle. In particular, a peak emissivity of over 95% is achieved in this broad spectral band at the Brewster angle. The angular range of maximum thermal emission can be tuned through the non-volatile structural phase transition property of SbS, while maintaining a constant spectral bandwidth. Moreover, we demonstrate electrically controlled thermal emission using a microheater-integrated SbS-SiO multilayer cavity. This photonic structure could serve as a versatile, tunable, lithography-free platform to dynamically control the angular range of directional thermal emission and emissivity for emerging applications of thermal emitters.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5nh00367aDOI Listing

Publication Analysis

Top Keywords

thermal emission
32
angular range
16
thermal
12
thermal emitters
12
tunable directional
8
directional thermal
8
emission
8
phase change
8
multilayer structure
8
control thermal
8

Similar Publications

Pure-Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers with Discontinuous Fused Benzene Rings.

Adv Mater

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Helicene-based circularly polarized luminescence (CPL) materials suffer from severely low color purity in circularly polarized organic light-emitting diodes (CP-OLEDs). Here, a novel molecular engineering strategy is introduced by replacing helicene containing continuous fused benzene rings with a multiple resonance (MR) framework comprising discontinuous fused benzene rings. This approach effectively suppresses high-frequency C─C bond stretching vibrations and enhances short-range charge transfer, enabling high color purity, CPL activity, and efficient thermally activated delayed fluorescence (TADF).

View Article and Find Full Text PDF

This work elucidates the thermo-kinetics of the thermal conversion of cameroonian kaolin to metakaolin as the main product. The thermokinetical parameters (activation energy and pre-exponential factor ) for the kaolin conversion were calculated using model-free methods, the Kissinger-Akahira-Sunrose (KAS) and the Flynn-Wall-Ozawa (FWO) method, and differential methods (Kissinger and Ozawa) additionally including iterative procedures for KAS and FWO methods (KAS-Ir; FWO-Ir). The cameroonian kaolin was heat-treated using three different heating rates, 5, 20 and 40 K min, leading to metakaolin samples named MK-(5), MK-(20) and MK-(40).

View Article and Find Full Text PDF

India's energy demand increased by 7.3% in 2023 compared to 2022 (5.6%), primarily met by coal-based thermal power plants (TPPs) that contribute significantly to greenhouse gas emissions.

View Article and Find Full Text PDF

Quantitative estimation of odorous emissions from heterogeneous area sources via thermal imaging drone.

Sci Total Environ

September 2025

Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering, "Giulio Natta" - Piazza Leonardo da Vinci 32, 20133, Milano, Italy.

The outdoor storage of wood chips, used in biomass thermal power plants, may lead to different diffuse gaseous emissions. These emissions can contain different molecules, often with a non-negligible odour potential. Despite this need, these solid area sources are particularly complex to be characterised, due to their very high heterogeneity determined by a complex phenomenon of self-heating.

View Article and Find Full Text PDF

The significant global energy consumption strongly emphasizes the crucial role of net-zero or green structures in ensuring a sustainable future. Considering this aspect, incorporating thermal insulation materials into building components is a well-accepted method that helps to enhance thermal comfort in buildings. Furthermore, integrating architectural components made from solid refuse materials retrieved from the environment can have significant environmental benefits.

View Article and Find Full Text PDF