98%
921
2 minutes
20
Cyclo[]carbons, molecular rings consisting solely of carbon atoms, have previously been studied in the gas phase and on surfaces at cryogenic temperatures, but they are generally considered too reactive to be studied under ambient laboratory conditions. In this study, we report the synthesis of a cyclo[48]carbon catenane, in which the C ring is protected by being threaded through three other macrocycles. This cyclo[48]carbon [4]catenane is stable enough for spectroscopic characterization in solution at room temperature. Its mass spectrum displays the expected molecular ions; its C nuclear magnetic resonance spectrum gives a single resonance for all 48 sp carbon atoms at 72.9 parts per million; and its Raman spectrum shows an intense peak at 1890 inverse centimeters, similar to linear polyynes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.ady6054 | DOI Listing |
Nano Lett
September 2025
State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.
View Article and Find Full Text PDFAdv Mater
September 2025
KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
Metal-nitrogen-carbon (M-N-C) catalysts display considerable potential as cost-effective alternatives to noble metals in oxygen electrocatalysis. However, uncontrolled atomic migration and random structural rearrangement during pyrolysis often lead to disordered coordination environments and sparse active sites, fundamentally limiting their intrinsic catalytic activities and long-term durability. Herein, a novel strategy is reported for use in directionally regulating atomic migration pathways via the incorporation of a foreign metal (La).
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
September 2025
The structure of 2-[4-(di-cyano-meth-yl)cyclo-hexa-2,5-dien-1-yl]propane-bis-(nitrilium) bis-(hexa-fluorido-arsenate), CHN ·2AsF , has ortho-rhom-bic () symmetry. The compound exhibits a layer structure, which is formed by hydrogen bonds between the semi-protonated nitrile groups. Unexpectedly, no H⋯F contacts are observed.
View Article and Find Full Text PDFACS Omega
September 2025
Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico.
In this work, carbon nanodots (CNDs) were synthesized via a pyrolysis carbonization method using petals. The synthesized CNDs exhibit optical absorption in the UV region, with a tail extending out into the visible range. When these CNDs interact with Ho ions through charge transfer processes, they form an RE-CNDs hybrid (Rare Earth-CNDs hybrid), resulting in fluorescence quenching in an aqueous solution.
View Article and Find Full Text PDFACS Omega
September 2025
University of Chemistry and Technology, Prague 166 28, Czech Republic.
The growing threat of antibiotic-resistant bacteria continues to be one of the biggest challenges facing public health. As a result, there is an increasing focus on developing new substances with both antimicrobial and biofilm inhibition activities. One such group of compounds is surfactants, particularly quaternary ammonium salts (QASs), which are commonly used as disinfectants in healthcare.
View Article and Find Full Text PDF