Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Reticulate evolution can be modelled using phylogenetic networks. Tree-based networks, which are one of the more general classes of phylogenetic networks, have recently gained eminence for its ability to represent evolutionary histories with an underlying tree structure. To better understand tree-based networks, numerous characterizations have been proposed, based on tree embeddings, matchings, and arc partitions. Here, we build a bridge between two arc partition characterizations, namely maximal fence decompositions and cherry covers. Results on cherry covers have been found for general phylogenetic networks. We first show that the number of cherry covers is the same as the number of support trees (underlying tree structure of tree-based networks) for a given semi-binary network. Maximal fence decompositions have only been defined thus far for binary networks (constraints on vertex degrees). We remedy this by generalizing fence decompositions to non-binary networks, and using this, we characterize semi-binary tree-based networks in terms of forbidden structures. Furthermore, we give an explicit enumeration of cherry covers of semi-binary networks, by studying its fence decomposition. Finally, we prove that it is possible to characterize semi-binary tree-child networks, a subclass of tree-based networks, in terms of the number of their cherry covers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCBBIO.2025.3587086 | DOI Listing |