98%
921
2 minutes
20
Colorectal cancer (CRC) is a leading cause of cancer-related morbidity and mortality worldwide. Despite the efficacy of oxaliplatin-based chemotherapy (CT) in CRC treatment, CT resistance remains a major obstacle to successful patient outcomes. Epithelial-mesenchymal transition (EMT), a key cellular process in cancer metastasis, plays a pivotal role in resistance to CT. The tumor microenvironment (TME), particularly cancer-associated fibroblasts (CAFs), is known to contribute to EMT and therapy resistance. Here, we employ single-cell RNA sequencing (scRNA-seq) to analyze primary CRC tumor samples from patients undergoing CT and nonchemotherapy (nCT) treatments. Our study identifies specific epithelial cell clusters resistant to oxaliplatin, elucidating the molecular pathways involved in EMT and resistance. Furthermore, we explore the role of CAF subpopulations in promoting resistance within the TME. Our findings highlight the importance of functional immune profiling and genomic analyses in identifying potential biomarkers for predicting CT responses and improving personalized treatment strategies. This work provides new insights into the molecular mechanisms of oxaliplatin resistance in CRC and supports the development of novel immune-based therapeutic approaches to enhance patient outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12349992 | PMC |
http://dx.doi.org/10.1155/humu/6705599 | DOI Listing |
Sci Adv
September 2025
Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
Breastfeeding is essential for reducing infant morbidity and mortality, yet exclusive breastfeeding rates remain low, often because of insufficient milk production. The molecular causes of low milk production are not well understood. Fresh milk samples from 30 lactating individuals, classified by milk production levels across postpartum stages, were analyzed using genomic and microbiome techniques.
View Article and Find Full Text PDFSci Transl Med
September 2025
Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai 200032, P. R. China.
Triple-negative breast cancers (TNBCs) lack predictive biomarkers to guide immunotherapy, especially during early-stage disease. To address this issue, we used single-cell RNA sequencing, bulk transcriptomics, and pathology assays on samples from 171 patients with early-stage TNBC receiving chemotherapy with or without immunotherapy. Our investigation identified an enriched subset of interferon (IFN)-induced CD8 T cells in early TNBC samples, which predict immunotherapy nonresponsiveness.
View Article and Find Full Text PDFPLoS One
September 2025
Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America.
The study of plant biology has traditionally focused on investigations conducted at the tissue, organ, or whole plant level. However, single-cell transcriptomics has recently emerged as an important tool for plant biology, enabling researchers to uncover the expression profiles of individual cell types within a tissue. The application of this tool has revealed new insights into cell-to-cell gene expression heterogeneity and has opened new avenues for research in plant biology.
View Article and Find Full Text PDFBioinformatics
September 2025
Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
Motivation: RNA velocity has become a powerful tool for uncovering transcriptional dynamics in snapshot single-cell data. However, current RNA velocity approaches often assume constant transcriptional rates and treat genes independently with gene-specific times, which may introduce biases and deviate from biological realities. Here, we present InterVelo, a novel deep learning framework that simultaneously learns cellular pseudotime and RNA velocity.
View Article and Find Full Text PDFFunct Integr Genomics
September 2025
Department of Plastic Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
Keloid scarring and Metabolic Syndrome (MS) are distinct conditions marked by chronic inflammation and tissue dysregulation, suggesting shared pathogenic mechanisms. Identifying common regulatory genes could unveil novel therapeutic targets. Methods.
View Article and Find Full Text PDF