Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Globally distributed measurements of the diurnal variation of fine particulate matter (PM) reveal a remarkable overall consistency with similar bimodal patterns and some regional variation, neither of which is well understood. We interpret these observations using the GEOS-Chem global model of atmospheric composition in its high-performance configuration (GCHP) at fine resolution of C180 (∼50 km). The base simulation overestimates the PM accumulation overnight, leading to excessive diurnal amplitude and earlier PM morning peaks than observations. These biases are reduced by applying sector- and species-wise diurnal scaling factors on anthropogenic emissions, by resolving the aerosol subgrid vertical gradient within the surface model layer, by applying revised wet deposition, and by revising the mixing coefficient in the boundary layer. Budget analyses indicate that the morning peak of PM is likely driven by changes in the aerosol subgrid vertical gradient with fumigation after sunrise, that the concentration decrease until late afternoon is driven by boundary layer mixing and thermodynamic partitioning of a semivolatile aerosol to the gas phase, that the concentration increase during evening is driven by enhanced secondary chemical production and persistent primary anthropogenic emissions, and that the consistently high concentration overnight is driven by the balance between emissions, chemical production, and boundary layer mixing and deposition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341546PMC
http://dx.doi.org/10.1021/acsestair.5c00068DOI Listing

Publication Analysis

Top Keywords

boundary layer
12
diurnal variation
8
variation fine
8
fine particulate
8
particulate matter
8
anthropogenic emissions
8
aerosol subgrid
8
subgrid vertical
8
vertical gradient
8
layer mixing
8

Similar Publications

Petit-spot volcanism plays a critical role in the metasomatism of oceanic plates prior to subduction and in their recycling into the deep mantle. The extent of metasomatism depends on the number and volume of petit-spot volcanic edifices and intrusions, making precise identification of petit-spot volcanic fields essential. However, conventional methods based on seafloor topography and acoustic backscatter intensity alone have limitations in accurately delineating these features.

View Article and Find Full Text PDF

Turbulent convection governs heat transport in both natural and industrial settings, yet optimizing it under extreme conditions remains a significant challenge. Traditional control strategies, such as predefined temperature modulation, struggle to achieve substantial enhancement. Here, we introduce a deep reinforcement learning (DRL) framework that autonomously discovers optimal control policies to maximize heat transfer in turbulent Rayleigh-Bénard convection.

View Article and Find Full Text PDF

Plasticity Mechanisms in Nanostructured Cubic Boron Nitride: Internal Defects and Amorphous Layers.

ACS Appl Mater Interfaces

September 2025

School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China.

Nanostructured cubic boron nitride (NS-cBN) has attracted significant attention due to its high hardness and excellent thermal stability, yet a systematic strategy to balance strength and toughness through atomically structural design remains elusive. Here, we integrate plasticity theory with large-scale atomistic simulations to elucidate the size-dependent roles of internal defects, i.e.

View Article and Find Full Text PDF

To explore the clinicopathological and molecular genetic characteristics of anaplastic lymphoma kinase (ALK)-rearranged renal cell carcinoma (RCC), including a rare case with the TPM1-ALK gene subtype. Three cases of ALK-rearranged RCC diagnosed in the Department of Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China from January 2020 to December 2024 were collected. Their clinical pathological and next-generation sequencing (NGS) data were analyzed.

View Article and Find Full Text PDF

3D Structural Phenotype of the Optic Nerve Head in Glaucoma and Myopia - A Key to Improving Glaucoma Diagnosis in Myopic Populations.

Am J Ophthalmol

September 2025

Singapore Eye Research Institute, Singapore National Eye Centre, Singapore; Duke-NUS Graduate Medical School, Singapore; Department of Ophthalmology, Emory University School of Medicine, Emory University; Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta

Purpose: To characterize the 3D structural phenotypes of the optic nerve head (ONH) in patients with glaucoma, high myopia, and concurrent high myopia and glaucoma, and to evaluate their variations across these conditions.

Design: Retrospective cross-sectional study.

Participants: A total of 685 optical coherence tomography (OCT) scans from 754 subjects of Singapore-Chinese ethnicity, including 256 healthy (H), 94 highly myopic (HM), 227 glaucomatous (G), and 108 highly myopic with glaucoma (HMG) cases METHODS: We segmented the retinal and connective tissue layers from OCT volumes and their boundary edges were converted into 3D point clouds.

View Article and Find Full Text PDF