Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Quantitative Systems Pharmacology (QSP) has become a powerful tool in the drug development landscape. To facilitate its continued implementation and to further enhance its applicability, a symbiotic approach in which QSP is combined with artificial intelligence (AI) and machine learning (ML) seems key. This manuscript presents four case examples where the application of a symbiotic approach could unlock new insights from multidimensional data, including real-world data, potentially leading to breakthroughs in drug development. Besides the remarkable benefits () that the symbiosis can offer, it does also carry potential challenges () such as how to assess and quantify uncertainty, bias and error. Hence, to ensure a successful implementation, arising need to be acknowledged and carefully addressed. Successful implementation of the symbiotic QSP and ML/AI approach has the potential to serve as a catalyst, paving the way for a paradigm shift in drug development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12342010 | PMC |
http://dx.doi.org/10.3389/fsysb.2024.1380685 | DOI Listing |