Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background/objectives: New computational methods, based on statistical, machine learning, and deep learning techniques using drug-related entities (e.g., genes, protein bindings, etc.), help reduce the costs of experiments through drug-drug interaction prediction (DDIp). This review examines recent advances in DDIp. It presents an in-depth review of the state-of-the-art studies relating to semi-supervised, supervised, self-supervised learning, and other techniques such as graph-based learning and matrix factorization methods for predicting DDIs. All possible interactions between drugs are not known, and accurately predicting interactions is even more difficult due to the complex nature of drug-drug interactions (DDI).
Methods: Of the 49 papers published in Web of Science in the last 6 years, 24 papers were considered relevant based on information presented in their titles and abstracts. The included articles focus specifically on predicting DDIs using a type of machine learning algorithm. Excluded articles focused on drug discovery, drug repurposing, molecular representation, or the extraction of biomedical interactions. The methodology, results limitations, and future research directions were studied for each paper. Common challenges, limitations, and future research directions were analyzed.
Results And Conclusion: The main limitations are class imbalance, poor performance on new drugs, limited explainability, and the need for additional data sources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12344460 | PMC |
http://dx.doi.org/10.3389/fphar.2025.1632775 | DOI Listing |