A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Bird-inspired flexible tail improves aerodynamic performance of fixed-wing aerial robots. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The tail of a bird-or a bird-inspired aerial robot-is an aerodynamically effective structure that enhances efficiency, stability, and manoeuvrability through attitude control and morphing. Optimising the morphology and structure of the tail can further improve the flight performance of such flyers. Inspired by previous studies on bird tails, we designed and developed a flexible tail capable of deforming in a bird-like manner. We investigated the effect of tail flexibility on the flight performance of a bird-inspired aerial robot through wind tunnel experiments and computational fluid dynamic analyses. Our results demonstrate that passive morphing of a tail with appropriate flexibility can adjust the tail surface orientation to direct aerodynamic force forward via pressure at the leading edge, thereby improving the lift-to-drag ratio and overall flight efficiency of the aerial robot. The proposed design also enables tail weight reduction, contributing to improved stability and manoeuvrability. These findings highlight tail flexibility as a key design parameter for improving the performance of bird-inspired aerial robots.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1748-3190/adf78eDOI Listing

Publication Analysis

Top Keywords

bird-inspired aerial
12
tail
9
flexible tail
8
aerial robots
8
stability manoeuvrability
8
flight performance
8
tail flexibility
8
performance bird-inspired
8
aerial robot
8
aerial
5

Similar Publications