Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We consider infrared (IR)-range diffraction radiation (DR) from finite configurations of circular graphene-covered dielectric nanowires excited by the density-modulated beam of charged particles. The beam velocity is assumed constant, and its field in the free space is considered as the incident one. The characterization of graphene employs the quantum-theory Kubo formalism and the resistive-sheet boundary conditions involving the frequency-dependent graphene surface impedance. To transform the problem into a well-conditioned algebraic equation for the field expansion coefficients, we use the separation of variables in the local coordinates and the addition theorem for the cylindrical functions. This leads to explicit inversion of the single-wire part of the problem, i.e. to the regularization, provides easy control of the accuracy and enables us to study fine resonance effects associated with the natural modes of the wire collections as open resonators.This article is part of the theme issue 'Analytically grounded full-wave methods for advances in computational electromagnetics'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12351300 | PMC |
http://dx.doi.org/10.1098/rsta.2024.0344 | DOI Listing |