Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The integration of functional ingredients into 3D food printing formulations presents both opportunities and challenges, particularly regarding the printability and structural integrity of the final product. This study investigates the effect of incorporating omega-3 fatty acids encapsulated in pea protein into a model food gel composed of gelatin and iota-carrageenan. Four formulations with varying concentrations of encapsulated omega-3 (0%, 3%, 3.75%, and 6%) were evaluated for their rheological, textural, and printability properties. Rheological analysis revealed a progressive increase in storage modulus (G') from 1200 Pa (0%) to 2000 Pa (6%), indicating enhanced elastic behavior. Extrusion analysis showed a reduction in maximum extrusion force from 325 N (0%) to 250 N (6%), and an increase in buffer time from 390 s to 500 s. Print fidelity at time 0 showed minimal deviation in the checkerboard geometry (area deviation: -12%), while the concentric cylinder showed the highest stability over 60 min (height deviation: 9%). These findings highlight the potential of using encapsulated bioactive compounds in 3D food printing to develop functional foods with tailored nutritional and mechanical properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12345773 | PMC |
http://dx.doi.org/10.3390/foods14152681 | DOI Listing |