CaAl-LDH-Derived High-Temperature CO Capture Materials with Stable Cyclic Performance.

Molecules

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The urgent need to mitigate rising global CO emissions demands the development of efficient carbon capture technologies. This study addresses the persistent challenge of sintering-induced performance degradation in CaO-based sorbents during high-temperature CO capture. A novel solvent/nonsolvent synthetic strategy to fabricate CaO/CaAl-layered double oxide (LDO) composites was developed, where CaAl-LDO serves as a nanostructural stabilizer. The CaAl-LDO precursor enables atomic-level dispersion of components, which upon calcination forms a CaAlO "rigid scaffold" that spatially confines CaO nanoparticles and effectively mitigates sintering. Thermogravimetric analysis results demonstrate exceptional cyclic stability; the composite achieves an initial CO uptake of 14.5 mmol/g (81.5% of theoretical capacity) and retains 87% of its capacity after 30 cycles. This performance significantly outperforms pure CaO and CaO/MgAl-LDO composites. Physicochemical characterization confirms that structural confinement preserves mesoporous channels, ensuring efficient CO diffusion. This work establishes a scalable, instrumentally simple route to high-performance sorbents, offering an efficient solution for carbon capture in energy-intensive industries such as power generation and steel manufacturing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348150PMC
http://dx.doi.org/10.3390/molecules30153290DOI Listing

Publication Analysis

Top Keywords

high-temperature capture
8
carbon capture
8
caal-ldh-derived high-temperature
4
capture
4
capture materials
4
materials stable
4
stable cyclic
4
cyclic performance
4
performance urgent
4
urgent mitigate
4

Similar Publications

Dual-functional hydrochar via hydrothermal carbonization for norfloxacin removal: Fractal adsorption kinetics and mechanism elucidation.

Sci Total Environ

September 2025

Laboratoire Physico-Chimie des Matériaux, Substances Naturelles et Environnement, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco.

Escalating concentrations of norfloxacin (NFX) in surface and wastewaters demand sustainable remediation strategies. In this study, dual-functional hydrochars were synthesized from argan nut shells (ArNS) via hydrothermal carbonization (HTC), with process conditions optimized by varying temperature (150-200 °C) and residence time (2-6 h). Among the materials, H1:5@150-4-prepared at 150 °C for 4 h with a biomass-to-water ratio of 1:5-exhibited the best performance, achieving a monolayer NFX adsorption capacity of 27.

View Article and Find Full Text PDF

Comparative analysis of machine learning based dissolved oxygen predictions in the Yellow River Basin: The role of diverse environmental predictors.

J Environ Manage

September 2025

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.

Dissolved oxygen (DO) is a key water quality indicator reflecting river health. Modeling and understanding the spatiotemporal dynamics of DO and its influencing factors are crucial for effective river management. Machine learning (ML) models have gained popularity in water quality prediction; however, their accuracy strongly depends on the predictor variables.

View Article and Find Full Text PDF

The aluminum electrolysis industry generates massive greenhouse gas emissions dominated by CO and perfluorocarbons (PFCs, CF/CF), presenting dual challenges of climate impact and resource waste. Here, we report a robust nickel-based metal-organic framework (SIFSIX-3-Ni) featuring confined square channels (3.55 Å) that achieves the molecular-sieving separation of CO from CF/CF mixtures.

View Article and Find Full Text PDF

While Dynamic Flux Balance Analysis provides a powerful framework for simulating metabolic behavior, incorporating operating conditions such as pH and temperature, which profoundly impact monoclonal antibodies production, remains challenging. This study presents an advanced dFBA model that integrates kinetic constraints formulated as functions of pH and temperature to predict CHO cell metabolism under varying operational conditions. The model was validated against data from 20 fed-batch experiments conducted in Ambr®250 bioreactors.

View Article and Find Full Text PDF

Wetlands play a crucial role in global greenhouse gas (GHG) dynamics, yet their response to climate change is not yet fully understood. Here, we investigate how increasing temperature and oxygen availability interact to regulate wetland GHG emissions through combined analysis of biogeochemical and functional gene measurements. We found distinct temperature-dependent shifts in carbon emission pathways, with CO emissions unexpectedly declining as temperature rose from 15 to 25 °C, while increasing consistently at higher temperatures (25-35 °C), reflecting a transition to more thermally-driven processes.

View Article and Find Full Text PDF