Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Geographical origin authentication of agrifood products is essential for ensuring their quality, preventing fraud, and maintaining consumers' trust. In this study, we used proton nuclear magnetic resonance (H NMR) and excitation-emission matrix (EEM) fluorescence spectroscopy combined with chemometric methods for the geographical origin characterization of olive drupes and leaves from different Tuscany subregions, where olive oil production is relevant. Single-block approaches were implemented for individual datasets, using principal component analysis (PCA) for data visualization and Soft Independent Modeling of Class Analogy (SIMCA) for sample classification. H NMR spectroscopy provided detailed metabolomic profiles, identifying key compounds such as polyphenols and organic acids that contribute to geographical differentiation. EEM fluorescence spectroscopy, in combination with Parallel Factor Analysis (PARAFAC), revealed distinctive fluorescence signatures associated with polyphenolic content. A mid-level data fusion strategy, integrating the common dimensions (ComDim) method, was explored to improve the models' performance. The results demonstrated that both spectroscopic techniques independently provided valuable insights in terms of geographical characterization, while data fusion further improved the model performances, particularly for olive drupes. Notably, this study represents the first attempt to apply EEM fluorescence for the geographical classification of olive drupes and leaves, highlighting its potential as a complementary tool in geographic origin authentication. The integration of advanced spectroscopic and chemometric methods offers a reliable approach for the differentiation of samples from closely related areas at a subregional level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348233 | PMC |
http://dx.doi.org/10.3390/molecules30153208 | DOI Listing |