Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Excess caloric intake and insufficient physical activity are the two major drivers underlying the global obesity and type 2 diabetes mellitus epidemics. However, circadian misalignment of caloric intake and physical activity, as commonly experienced by nightshift workers, can also have detrimental effects on body weight and glucose homeostasis. We have previously reported that combined restriction of eating and voluntary wheel running to the inactive phase (i.e., a rat model for circadian misalignment) shifted liver and muscle clock rhythms by ~12 h and prevented the reduction in the amplitude of the muscle clock oscillation otherwise induced by light-phase feeding. Here, we extended on these findings and investigated how a high-fat diet (HFD) affects body composition and liver and muscle clock gene rhythms in male Wistar rats while restricting both eating and exercise to either the inactive or active phase. To do this, we used four experimental conditions: sedentary controls with no wheel access on a non-obesogenic diet (NR), sedentary controls with no wheel access on an HFD (NR-H), and two experimental groups on an HFD with simultaneous access to a running wheel and HFD time-restricted to either the light phase (light-run-light-fed + HFD, LRLF-H) or the dark phase (dark-run-dark-fed + HFD. DRDF-H). Consumption of an HFD did not alter the daily running distance of the time-restricted groups but did increase the running intensity in the LRLF-H group compared to a previously published LRLF chow fed group. However, no such increase was observed for the DRDF-H group. LRLF-H ameliorated light phase-induced disturbances in the soleus clock more effectively than under chow conditions and had a protective effect against HFD-induced changes in liver clock gene expression. Together with (our) previously published results, these data suggest that eating healthy and being active at the wrong time of the day can be as detrimental as eating unhealthy and being active at the right time of the day.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12347854PMC
http://dx.doi.org/10.3390/ijms26157658DOI Listing

Publication Analysis

Top Keywords

muscle clock
12
wheel running
8
light phase
8
running intensity
8
high-fat diet
8
daily running
8
caloric intake
8
physical activity
8
circadian misalignment
8
liver muscle
8

Similar Publications

External Cues as Transducers of Peripheral Tissue-Specific Molecular Clocks to Regulate Systemic Circadian Rhythms and Metabolism.

FASEB J

September 2025

Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China.

The molecular clock exhibits distinct characteristics across various tissues and can be synchronized by particular stimuli. Furthermore, there is an intricate interplay among the molecular clocks within different tissues. In this context, we present an overview of the tissue-specific molecular clock and discuss pivotal nonphotic regulators that govern the host's circadian rhythms and metabolic processes.

View Article and Find Full Text PDF

Aim: Autoimmune diseases, characterized by the immune system mistakenly attacking the body's own tissues, are a growing global concern, with increasing prevalence. The circadian clock is a fundamental regulator of physiological processes, critically modulating immune functions. This review explores the intricate connections between circadian rhythms and immune responses in autoimmune pathogenesis and how disruptions exacerbate disease.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder with a largely unknown duration and pathophysiology of the pre-diagnostic phase, especially for the common non-monogenic form.

Methods: We leveraged the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort with up to 30 years of follow-up to identify incident ALS cases across five European countries. Pre-diagnostic plasma samples from initially healthy participants underwent high-throughput proteomic profiling (7,285 protein markers, SomaScan).

View Article and Find Full Text PDF

as a Potential Nutrition-Responsive Biomarker for the Prevention of Age-Related Sarcopenia.

Int J Mol Sci

August 2025

Biological Clock-Based Anti-Aging Convergence RLRC, Korea University, Sejong-ro 2511, Sejong 30019, Republic of Korea.

Sarcopenia, the age-related decline in skeletal muscle mass and function, is a growing health concern in aging populations. Nutritional interventions are increasingly recognized for their therapeutic potential; however, molecular biomarkers that reflect their efficacy are limited. To identify nutrition-responsive genes relevant to sarcopenia, we performed transcriptomic profiling of gastrocnemius muscle from mature and middle-aged mice.

View Article and Find Full Text PDF

Circadian Rhythm and Muscle Function.

Adv Exp Med Biol

August 2025

Faculty of Science and Engineering, Waseda University, Shinjuku, Japan.

Since the discovery of clock gene in mammals, the physiological role of the internal clock, which produces a rhythm of approximately 24 h per day, has been revealed, and it has become clear that a regular life rhythm is important for maintaining good health. Skeletal muscle function is no exception, and has been reported to be regulated by the internal clock. In the skeletal muscle, more than 2300 genes exhibit circadian rhythms and are involved in a wide range of functions, including myogenesis, transcription, and metabolism.

View Article and Find Full Text PDF