Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Large-conductance, voltage- and calcium-activated potassium (BK) channels are crucial regulators of cellular excitability, influenced by various signaling molecules, including heme. The BK channel contains a heme-sensitive motif located at the sequence , which is a conserved heme regulatory motif (HRM) found in the cytochrome c protein family. This motif is situated within a linker region of approximately 120 residues that connect the RCK1 and RCK2 domains, and it also includes terminal α-helices similar to those found in cytochrome c family proteins. However, much of this region has yet to be structurally defined. We conducted a sequence alignment of the BK linker region with mitochondrial cytochrome c and cytochrome c domains from various hemoproteins to better understand this functionally significant region. In addition to the HRM motif, we discovered that important structural and functional elements of cytochrome c proteins are conserved in the BK RCK1-RCK2 linker. Firstly, the part of the BK region that is resolved in available atomic structures shows similarities in secondary structural elements with cytochrome c domain proteins. Secondly, the Met80 residue in cytochrome c domains, which acts as the second axial ligand to the heme iron, aligns with the BK channel. Beyond its role in electron shuttling, cytochrome c domains exhibit various catalytic properties, including peroxidase activity-specifically, the oxidation of suitable substrates using peroxides. Our findings reveal that the linker region endows human BK channels with peroxidase activity, showing an apparent HO affinity approximately 40-fold greater than that of mitochondrial cytochrome c under baseline conditions. This peroxidase activity was reduced when substitutions were made at and other relevant sites. These results indicate that the BK channel possesses a novel module similar to the cytochrome c domains of hemoproteins, which may give rise to unique physiological functions for these widespread ion channels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12346439 | PMC |
http://dx.doi.org/10.3390/ijms26157053 | DOI Listing |