98%
921
2 minutes
20
(Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in vitro biological activities. The phenolic composition was determined using UHPLC-HRMS/MS, HPLC-DAD, and quantitative colorimetric assays. Antioxidant activity was assessed against synthetic free radicals, reactive oxygen and nitrogen species, transition metals, and pro-oxidant enzymes. Enzymatic inhibition of tyrosinase, hyaluronidase, collagenase, and elastase were evaluated using in vitro assays. Cytocompatibility was tested on human keratinocytes and NIH/3T3 fibroblasts using MTT and resazurin assays, respectively, while wound healing was evaluated on NIH/3T3 fibroblasts using the scratch assay. Antifungal activity was investigated against several and dermatophyte species, while antibiofilm activity was tested against . The extract was found to be rich in phenolic compounds, accounting for nearly 45% of its dry weight. These included flavonoids, phenolic acids, and proanthocyanidins, with ellagitannins (punicalagin) being the predominant group. The extract demonstrated potent antioxidant, anti-tyrosinase, anti-collagenase, anti-elastase, and antidermatophytic activities, including fungistatic, fungicidal, and antibiofilm effects. These findings highlight the potential of as a valuable and underexplored source of bioactive phenolic compounds with strong potential for the development of innovative approaches for skin care and therapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12348581 | PMC |
http://dx.doi.org/10.3390/plants14152299 | DOI Listing |
Plants (Basel)
July 2025
Department of Pharmacology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain.
(Sweet) Samp. (Cistaceae) is a herbaceous species native to southwestern Europe, traditionally used to treat wounds, ulcers, and inflammatory or infectious skin conditions. This study aimed to characterize the phytochemical profile of its aqueous leaf extract and evaluate its skin-related in vitro biological activities.
View Article and Find Full Text PDFPlants (Basel)
June 2025
School of Biology & Environmental Science, Faculty of Agriculture & Natural Sciences, University of Mpumalanga, Private Bag X11283, Nelspruit 1200, South Africa.
Local innovations regarding plant-derived spice and flavorant formulations and preparation techniques are mostly recorded nowhere and usually passed on generationally through word of mouth. This study aimed to inventory the utilization of plants and perceptions of novel indigenous food spicing and flavoring among the Vhavenḓa people in South Africa. This study adopted face-to-face interviews with 360 participants using semi-structured questionnaires.
View Article and Find Full Text PDFMolecules
May 2016
Department of Biological Sciences, FFUP-Faculty of Pharmacy of the University of Porto, Rua de Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal.
Tuberaria lignosa (Sweet) Samp. is found in European regions, and has antioxidant properties due to its composition in ascorbic acid and phenolic compounds. Given its traditional use and antioxidant properties, the tumor cell growth inhibitory potential of aqueous extracts from T.
View Article and Find Full Text PDFBMC Genomics
February 2015
Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, 610064, Chengdu, China.
Background: Several de novo transcriptome assemblers have been developed recently to assemble the short reads generated from the next-generation sequencing platforms and different strategies were employed for assembling transcriptomes of various eukaryotes without genome sequences. Though there are some comparisons among these de novo assembly tools for assembling transcriptomes of different eukaryotic organisms, there is no report about the relationship between assembly strategies and ploidies of the organisms.
Results: When we de novo assembled transcriptomes of sweet potato (hexaploid), Trametes gallica (a diploid fungus), Oryza meyeriana (a diploid wild rice), five assemblers, including Edena, Oases, Soaptrans, IDBA-tran and Trinity, were used in different strategies (Single-Assembler Single-Parameter, SASP; Single-Assembler Multiple-Parameters, SAMP; Combined De novo Transcriptome Assembly, CDTA, that is multiple assembler multiple parameter).
Physiol Behav
May 2014
Support Unit for Animal Resources Development, Research Resources Center, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
The senescence-accelerated mouse (SAM) is used as an animal model of senescence acceleration and age-associated disorders. SAM is derived from unexpected crosses between the AKR/J and unknown mouse strains. There are nine senescence-prone (SAMP) strains and three senescence-resistant (SAMR) strains.
View Article and Find Full Text PDF