A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Machine Learning-Driven Radiomic Profiling of Thalamus-Amygdala Nuclei for Prediction of Postoperative Delirium After STN-DBS in Parkinson's Disease Patients: A Pilot Study. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Postoperative delirium is a common complication following sub-thalamic nucleus deep brain stimulation surgery in Parkinson's disease patients. Postoperative delirium has been shown to prolong hospital stays, harm cognitive function, and negatively impact outcomes. Utilizing radiomics as a predictive tool for identifying patients at risk of delirium is a novel and personalized approach. This pilot study analyzed preoperative T1-weighted and T2-weighted magnetic resonance images from 34 Parkinson's disease patients, which were used to segment the thalamus, amygdala, and hippocampus, resulting in 10,680 extracted radiomic features. Feature selection using the minimum redundancy maximal relevance method identified the 20 most informative features, which were input into eight different machine learning algorithms. A high predictive accuracy of postoperative delirium was achieved by applying regularized binary logistic regression and linear discriminant analysis and using 10 most informative radiomic features. Regularized logistic regression resulted in 96.97% (±6.20) balanced accuracy, 99.5% (±4.97) sensitivity, 94.43% (±10.70) specificity, and area under the receiver operating characteristic curve of 0.97 (±0.06). Linear discriminant analysis showed 98.42% (±6.57) balanced accuracy, 98.00% (±9.80) sensitivity, 98.83% (±4.63) specificity, and area under the receiver operating characteristic curve of 0.98 (±0.07). The feed-forward neural network also demonstrated strong predictive capacity, achieving 96.17% (±10.40) balanced accuracy, 94.5% (±19.87) sensitivity, 97.83% (±7.87) specificity, and an area under the receiver operating characteristic curve of 0.96 (±0.10). However, when the feature set was extended to 20 features, both logistic regression and linear discriminant analysis showed reduced performance, while the feed-forward neural network achieved the highest predictive accuracy of 99.28% (±2.71), with 100.0% (±0.00) sensitivity, 98.57% (±5.42) specificity, and an area under the receiver operating characteristic curve of 0.99 (±0.03). Selected radiomic features might indicate network dysfunction between thalamic laterodorsal, reuniens medial ventral, and amygdala basal nuclei with hippocampus cornu ammonis 4 in these patients. This finding expands previous research suggesting the importance of the thalamic-hippocampal-amygdala network for postoperative delirium due to alterations in neuronal activity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10278-025-01616-1DOI Listing

Publication Analysis

Top Keywords

postoperative delirium
20
specificity area
16
area receiver
16
receiver operating
16
operating characteristic
16
characteristic curve
16
parkinson's disease
12
disease patients
12
radiomic features
12
logistic regression
12

Similar Publications