98%
921
2 minutes
20
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12346459 | PMC |
http://dx.doi.org/10.3390/cells14151176 | DOI Listing |
J Pediatr Hematol Oncol
September 2025
Division of Pediatric Hematology-Oncology, Mayo Clinic Children's, Rochester, MN.
Post-transplant lymphoproliferative disorder is a rare and serious complication of organ and stem cell transplant secondary to immunosuppressive therapies, most commonly of monomorphic B-cell subtype. Here we describe the first reported case of a pediatric heart transplant patient who developed both monomorphic B-cell and nondestructive PTLD with plasmacytic hyperplasia followed by an unrelated case of monomorphic T-cell and nondestructive PTLD with plasmacytic hyperplasia, which later relapsed. We detail the patient's risk factors for development of PTLD and her successful treatment regimens.
View Article and Find Full Text PDFBlood Adv
September 2025
AP-HP, Hôpital Saint Louis and University of Paris, INSERM U944 and THEMA insitute, Paris, France.
Germline DDX41 mutations (DDX41mut) are identified in approximately 5% of myeloid malignancies with excess of blasts, representing a distinct MDS/AML entity. The disease is associated with better outcomes compared to DDX41 wild-type (DDX41WT), but patients who do not undergo allogeneic hematopoietic stem cell transplantation (HSCT) may experience late relapse. Due to the recent identification of DDX41mut, data on post-HSCT outcomes remain limited.
View Article and Find Full Text PDFJ Pediatr Hematol Oncol
September 2025
Nuclear Medicine, Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
Pediatric pancreatic neuroblastoma is a rare cancer in children, with only limited cases available in the literature. We report a case of a 4-year-old girl diagnosed with high-risk pancreatic neuroblastoma. The girl was treated with induction chemotherapy followed by autologous stem cell transplant and maintenance with 13-cis-retinoic acid.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University, Suzhou 215124, China.
Acute lung injury (ALI) is characterized by the excessive accumulation of reactive oxygen species (ROS), which triggers a severe inflammatory cascade and the destruction of the alveolar-capillary barrier, leading to respiratory failure and life-threatening outcomes. Considering the limitations and adverse effects associated with current therapeutic interventions, developing effective and safe strategies that target the complex pathophysiological mechanisms of ALI is crucial for improving patient outcomes. Herein, we developed an inhalable, multifunctional nanotherapeutic (MSCNVs@CAT) by encapsulating catalase (CAT) in mesenchymal-stem-cell-derived nanovesicles (MSCNVs).
View Article and Find Full Text PDFClin Transplant
September 2025
Centro De Hematología y Medicina Interna, Clínica Ruiz, Puebla, Mexico.