Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Recent advancements in understanding the brain's functional organization related to behavior have been pivotal, particularly in the development of predictive models based on brain connectivity. A major analytical strategy in this domain involves a two-step process by first constructing a connectivity matrix from predefined brain regions, and then linking these connections to behaviors or clinical outcomes. Although some advances considered subject-specific functionally homogeneous nodes without relying on predefined regions of interest (ROIs), all these approaches with unsupervised node partitions predict outcomes inefficiently with independently established connectivity. In this paper, we introduce the Supervised Brain Parcellation (SBP), a brain node parcellation scheme informed by the downstream predictive task. With voxel-level functional time courses generated under resting-state or cognitive tasks as input, our approach clusters voxels into nodes in a manner that maximizes the correlation between inter-node connections and the behavioral outcome, while also accommodating intra-node homogeneity. We rigorously evaluate the SBP approach using resting-state and task-based fMRI data from both the Adolescent Brain Cognitive Development (ABCD) study and the Human Connectome Project (HCP). Our analyses show that SBP significantly improves out-of-sample connectome-based predictive performance compared to conventional step-wise methods under various brain atlases. This advancement holds promise for enhancing our understanding of brain functional architectures with behavior and establishing more informative network neuromarkers for clinical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319940 | PMC |
http://dx.doi.org/10.1162/IMAG.a.56 | DOI Listing |