Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diffusion-weighted magnetic resonance imaging (dMRI) is the only non-invasive tool for studying white matter tracts and structural connectivity of the brain. These assessments rely heavily on tractography techniques, which reconstruct virtual streamlines representing white matter fibers. Much effort has been devoted to improving tractography methodology for adult brains, while tractography of the fetal brain has been largely neglected. Fetal tractography faces unique difficulties due to low dMRI signal quality, immature and rapidly developing brain structures, and paucity of reference data. To address these challenges, this work presents a machine learning model, based on a deep neural network, for fetal tractography. The model input consists of five different sources of information: (1) Voxel-wise fiber orientation, inferred from a diffusion tensor fit to the dMRI signal; (2) Directions of recent propagation steps; (3) Global spatial information, encoded as normalized distances to keypoints in the brain cortex; (4) Tissue segmentation information; and (5) Prior information about the expected local fiber orientations supplied with an atlas. In order to mitigate the local tensor estimation error, a large spatial context around the current point in the diffusion tensor image is encoded using convolutional and attention neural network modules. Moreover, the diffusion tensor information at a hypothetical next point is included in the model input. Filtering rules based on anatomically constrained tractography are applied to prune implausible streamlines. We trained the model on manually-refined whole-brain fetal tractograms and validated the trained model on an independent set of 11 test subjects with gestational ages between 23 and 36 weeks. Results show that our proposed method achieves superior performance across all evaluated tracts. Qualitative assessments on independent data from the Developing Human Connectome Project demonstrated the generalizability of our method. The new method can significantly advance the capabilities of dMRI for studying normal and abnormal brain development in utero.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319953PMC
http://dx.doi.org/10.1162/imag_a_00537DOI Listing

Publication Analysis

Top Keywords

diffusion tensor
12
tractography fetal
8
fetal brain
8
machine learning
8
white matter
8
fetal tractography
8
dmri signal
8
neural network
8
model input
8
trained model
8

Similar Publications

The anterior commissure (AC) has an anterior and posterior limb. Despite comprehensive information about the posterior limb, there is limited and conflicting information about the anterior limb in the literature. We aimed to show the anatomical relationships of the AC with neighboring structures by using white matter microdissection and magnetic resonance (MR) tractography, primarily on the anterior limb of the AC.

View Article and Find Full Text PDF

Progressive lifespan modifications in the corpus callosum following a single concussion in juvenile male mice monitored by diffusion MRI.

Exp Neurol

September 2025

CNRS UMR 5536 RMSB, University of Bordeaux, Bordeaux, France; Basic Science Department, Loma Linda University School of Medicine, Loma Linda, CA, USA; CNRS UMR 7372 CEBC, La Rochelle University, Villiers-en-Bois, France.

Introduction: The vulnerability of white matter (WM) in acute and chronic moderate-severe traumatic brain injury (TBI) has been established. In concussion syndromes, including preclinical rodent models, lacking are comprehensive longitudinal studies spanning the mouse lifespan. We previously reported early WM modifications using clinically relevant neuroimaging and histological measures in a model of juvenile concussion at one month post injury (mpi) who then exhibited cognitive deficits at 12mpi.

View Article and Find Full Text PDF

Introduction: Radiosurgery targeting the thalamus has long been used to treat refractory pain, with medial thalamotomy as a key approach. Traditionally, targeting relied on indirect methods based on anatomical atlases, which do not account for individual variations in brain connectivity. Recent advances in connectomic-guided stereotactic radiosurgery have improved precision in the treatment of movement disorders, but their application to pain management remains underexplored.

View Article and Find Full Text PDF

Introduction: Dysfunction of the glymphatic system is thought to lead to build up of toxic proteins including β-amyloid and α-synuclein, and thus may be involved in dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). The Diffusion Tensor Image Analysis Along the Perivascular Space (DTI-ALPS) index has been proposed as a marker of glymphatic function.

Aims: To investigate DTI-ALPS in mild cognitive impairment (MCI) and dementia, and determine its relationship with cognitive decline, and biomarkers of neurodegeneration.

View Article and Find Full Text PDF