Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cardosins A and B are aspartic proteinases found in cardoon that share high sequence similarity, accumulate in the vacuole, and are responsive to stress conditions. These proteins have a 100 amino acid domain termed Plant Specific Insert (PSI), responsible for their vacuolar targeting. Different PSIs mediate different routes to the vacuole: PSI from cardosin A mediates a Golgi-independent route, while PSI from cardosin B (PSI B) mediates a conventional ER-to-Golgi pathway. It is known that stress can impact protein sorting, shifting it from the conventional pathway to a Golgi-independent route. As such, in this work we investigated the expression and localization of PSI B in Arabidopsis plants overexpressing PSI B-mCherry submitted to different abiotic stress conditions (saline, hydric, oxidative and Zn). The results revealed that the plants expressing PSI B showed increased PSI B accumulation under saline stress but decreased accumulation under hydric stress. PSI B accumulation was detected in the vacuole, but also in Endoplasmic Reticulum-derived vesicles (ER bodies-rod-shaped or spindle-like compartments within the ER that store and transport proteins), indicating a shift from the conventional PSI B-mediated route. Altogether, these findings highlight the role of PSI B in promoting plant fitness and adaptation to abiotic stress by modulating protein trafficking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343054 | PMC |
http://dx.doi.org/10.1002/pld3.70103 | DOI Listing |