Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objectives: Large language models (LLMs) offer potential in natural language processing tasks in healthcare. Due to the need for high accuracy, understanding their limitations is essential. The purpose of this study was to evaluate the performance of LLMs in classifying radiology reports for the presence of pulmonary embolism (PE) under various conditions, including different prompt designs and data perturbations.
Materials And Methods: In this retrospective, institutional review board approved study, we evaluated 3 Google's LLMs including Gemini-1.5-Pro, Gemini-1.5-Flash-001, and Gemini-1.5-Flash-002, in classifying 11 999 pulmonary CT angiography radiology reports for PE. Ground truth labels were determined by concordance between a computer vision-based PE detection (CVPED) algorithm and multiple LLM runs under various configurations. Discrepancies between algorithms' classifications were aggregated and manually reviewed. We evaluated the effects of prompt design, data perturbations, and repeated analyses across geographic cloud regions. Performance metrics were calculated.
Results: Of 11 999 reports, 1296 (10.8%) were PE-positive. Accuracy across LLMs ranged between 0.953 and 0.996. The highest recall rate for a prompt modified after a review of the misclassified cases (up to 0.997). Few-shot prompting improved recall (up to 0.99), while chain-of-thought generally degraded performance. Gemini-1.5-Flash-002 demonstrated the highest robustness against data perturbations. Geographic cloud region variability was minimal for Gemini-1.5+-Pro, while the Flash models showed stable performance.
Discussion And Conclusion: LLMs demonstrated high performance in classifying radiology reports, though results varied with prompt design and data quality. These findings underscore the need for systematic evaluation and validation of LLMs for clinical applications, particularly in high-stakes scenarios.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343119 | PMC |
http://dx.doi.org/10.1093/jamiaopen/ooaf073 | DOI Listing |