Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Despite the huge potential of magnetic resonance imaging (MRI) in mapping and exploring the brain, MRI measures can often be limited in their consistency, reproducibility, and accuracy which subsequently restricts their quantifiability. Nuisance nonbiological factors, such as hardware, software, calibration differences between scanners, and post-processing options, can contribute to, or drive trends in, neuroimaging features to an extent that interferes with biological variability. Such lack of consistency, known as lack of harmonisation, across neuroimaging datasets poses a great challenge for our capabilities in quantitative MRI. Here, we build a new resource for comprehensively mapping the extent of the problem and objectively evaluating neuroimaging harmonisation approaches. We use a travelling-heads paradigm consisting of multimodal MRI data of 10 travelling subjects, each scanned at five different sites on six different 3 T scanners from all the three major vendors and using five neuroimaging modalities, providing more comprehensive coverage than before. We also acquire multiple within-scanner repeats for a subset of subjects, setting baselines for multimodal scan-rescan variability. Having extracted hundreds of imaging-derived phenotypes, we compare three forms of variability: (i) between-scanner, (ii) within-scanner (within-subject), and (iii) biological (between-subject). We characterise the reliability of features across scanners and use our resource as a testbed to enable new investigations that until now have been relatively unexplored. Specifically, we identify optimal pipeline processing steps that minimise between-scanner variability in extracted features (implicit harmonisation). We also test the performance of post-processing harmonisation tools (explicit harmonisation) and specifically check their efficiency in reducing between-scanner variability against baseline standards provided by our data. Our explorations allow us to come up with good practice suggestions on processing steps and sets of features where results are more consistent, while our publicly released dataset (which we refer to as ON-Harmony) establishes references for future studies in this field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007558PMC
http://dx.doi.org/10.1162/imag_a_00042DOI Listing

Publication Analysis

Top Keywords

brain mri
8
harmonisation approaches
8
variability extracted
8
processing steps
8
between-scanner variability
8
harmonisation
6
mri
5
variability
5
resource development
4
development comparison
4

Similar Publications

Adenosine A receptors (AARs) have shown promising therapeutic properties despite their controversial role in modulating stroke outcome. However, the temporal evolution of cerebral AARs density after cerebral ischemia and its subsequent neuroinflammatory response have been scarcely explored. In this study, the expression of AARs after transient middle cerebral artery occlusion (MCAO) was evaluated in rats by positron emission tomography (PET) with [C]SCH442416 and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Background: Cerebrovascular reactivity reflects changes in cerebral blood flow in response to an acute stimulus and is reflective of the brain's ability to match blood flow to demand. Functional MRI with a breath-hold task can be used to elicit this vasoactive response, but data validity hinges on subject compliance. Determining breath-hold compliance often requires external monitoring equipment.

View Article and Find Full Text PDF

Perinatal stroke is a vascular injury occurring early in life, often resulting in motor deficits (hemiplegic cerebral palsy/HCP). Comorbidities may also include poor neuropsychological outcomes, such as deficits in memory. Previous studies have used resting state functional MRI (fMRI) to demonstrate that functional connectivity (FC) within hippocampal circuits is associated with memory function in typically developing controls (TDC) and in adults after stroke, but this is unexplored in perinatal stroke.

View Article and Find Full Text PDF

Background: Disruption of the blood-brain barrier (BBB) in high-grade brain tumors is characterized by contrast accumulation on diagnostic imaging. This window of opportunity study correlates contrast imaging features with the tumor distribution of BBB-permeable (levetiracetam) and -impermeable (cefazolin) drugs.

Methods: Patients with a clinical diagnosis of a high-grade brain tumor underwent MRI for surgical planning.

View Article and Find Full Text PDF

Aims: Skeletal muscle energetic augmentation might be a mechanism via which intravenous iron improves symptoms in heart failure, but no direct measurement of intrinsic mitochondrial function has been performed to support this notion. This molecular substudy of the FERRIC-HF II trial tested the hypothesis that ferric derisomaltose (FDI) would improve electron transport chain activity, given its high dependence on iron-sulfur clusters which facilitate electron transfer during oxidative phosphorylation.

Methods And Results: Vastus lateralis skeletal muscle biopsies were taken before and 2 weeks after randomization.

View Article and Find Full Text PDF